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Sommaire

Le code source offre un domaine d’application passionnant des méthodes d’apprentissage
en profondeur, englobant des tâches telles que la synthèse, la réparation et l’analyse de
programmes, ainsi que des tâches à l’intersection du code et du langage naturel. Bien que les
modèles d’apprentissage profond pour le code, en particulier les grands modèles de langage,
aient récemment connu un succès significatif, ils peuvent avoir du mal à se généraliser à du
code invisible. Cela peut conduire à des inexactitudes, en particulier lorsque vous travaillez
avec des référentiels contenant des logiciels propriétaires ou du code en cours de travail.

L’objectif principal de cette thèse est d’exploiter efficacement les signaux utiles du
contexte disponible afin d’améliorer les performances des modèles de code d’apprentissage
profond pour une tâche donnée. En incorporant ces indices contextuels, les capacités de
généralisation du modèle sont amplifiées, fournissant des informations supplémentaires non
évidentes à partir de l’entrée d’origine et orientant son attention vers des détails essentiels.
De plus, l’utilisation d’indices contextuels facilite l’adaptation aux nouvelles tâches et amé-
liore les performances des tâches existantes en effectuant des prédictions plus contextuelles.
Pour y parvenir, nous présentons un cadre général comprenant deux étapes : (a) l’amélio-
ration du contexte, qui implique l’enrichissement de l’entrée avec un contexte de support
obtenu grâce à l’identification et à la sélection d’indices contextuels pertinents, et (b) la pré-
diction à l’aide du contexte amélioré, où nous exploitez le contexte de support combiné aux
entrées pour faire des prédictions précises. La thèse présente quatre articles qui proposent
diverses approches pour ces étapes.

Le premier article divise le problème standard de la programmation par exemples en deux
étapes : (a) trouver des programmes qui satisfont des exemples individuels (solutions par
exemple) et, (b) combiner ces solutions par exemple en tirant parti de leurs états d’exécution
de programme pour trouver un programme qui satisfait tous les exemples donnés.

Le deuxième article propose une approche pour sélectionner des informations ciblées à
partir du fichier actuel et les utiliser pour adapter le modèle de complétion de code à un
contexte local jamais vu précédemment.

Le troisième article s’appuie sur le deuxième article en tirant parti des indices contextuels
de l’ensemble du répertoire de code à l’aide d’un ensemble de requêtes (prompts) proposées
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suggérant l’emplacement et le contenu du contexte particulièrement utile à extraire du ré-
pertoire. Nous proposons un cadre pour sélectionner la requête la plus pertinente, qui est
ensuite utilisée pour demander à un modèle de langage de code de générer des prédictions
pour le reste de la ligne de code suivant un curseur positionné dans un fichier.

Le quatrième article prolonge le troisième article en proposant un cadre qui apprend à
combiner plusieurs contextes divers à partir du répertoire. Nous montrons que la formation
de modèles de language de code plus petits de cette manière fonctionne mieux ou à égalité
avec des modèles beaucoup plus grands qui n’utilisent pas le contexte du répertoire de code.

Mots-clés: Apprentissage profond, synthèse de programmes, complétion de code, ap-
prentissage automatique pour le code, génie logiciel, recherche d’informations, grands mo-
dèles de langage.
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Summary

Source code provides an exciting application area of deep learning methods, encompassing
tasks like program synthesis, repair, and analysis, as well as tasks at the intersection of code
and natural language. Although deep learning models for code, particularly large language
models, have recently seen significant success, they can face challenges in generalizing to
unseen code. This can lead to inaccuracies especially when working with repositories that
contain proprietary software or work-in-progress code.

The main focus of this thesis is to effectively harness useful signals from the available
context such that it can improve the performance of the deep learning models of code at the
given task. By incorporating these contextual cues, the model’s generalization capabilities
are amplified, providing additional insights not evident from the original input and directing
its focus toward essential details. Furthermore, the use of contextual cues aids in adapt-
ing to new tasks and boosts performance on existing ones by making more context-aware
predictions. To achieve this, we present a general framework comprising two stages: (a)
Context Enhancement, which involves enriching the input with support context obtained
through the identification and selection of relevant contextual cues, and (b) Prediction using
the Enhanced Context, where we leverage the support context combined with the input to
make accurate predictions. The thesis presents four articles that propose diverse approaches
for these stages.

The first article breaks the standard problem of programming by examples into two
stages: (a) finding programs that satisfy individual examples (per-example solutions) and,
(b) combining these per-example solutions by leveraging their program execution states to
find a program that satisfies all given examples.

The second article proposes an approach for selecting targeted information from the
current file and using it to adapt the code completion model to an unseen, local context.

The third article builds upon the second article by leveraging contextual cues from the
entire code repository using a set of prompt proposals that govern the location and content
of the context that should be taken from the repository. We propose a framework to select
the most relevant prompt proposal context which is then used to prompt a large language
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model of code to generate predictions for the tokens in the rest of the line following the
cursor in a file.

The fourth article extends the third article by proposing a framework that learns to
combine multiple diverse contexts from the repository. We show that training smaller models
of code this way performs better or at par with significantly larger models that are not trained
with repository context.

Keywords: Deep Learning, Program Synthesis, Code Completion, Machine Learning
for Code, Software Engineering, Information Retrieval, Large Language Models.
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Chapter 1

Introduction

Machine Learning systems, especially deep learning, have shown remarkable performance
on a number of tasks like generation of natural language (Brown et al., 2020b; Anil et al.,
2023), images (Ramesh et al., 2022b; Saharia et al., 2022), speech (Radford et al., 2022),
protein structure prediction (Jumper et al., 2021), competing in games (Silver et al., 2016)
and discovering novel computational algorithms (Fawzi et al., 2022; Mankowitz et al., 2023).
A promising and exciting application area of deep learning methods lies in the domain
of source code, which involves tasks such as synthesis, repair, and analysis of computer
programs. The scope of these methods also extends to the intersection of code with natural
language, encompassing tasks like explaining code and linking code with documentation to
facilitate code search. The motivation for research toward developing these methods comes
from three different perspectives:

• Helping Non-Programmers: With the advent of technology, a rapidly growing
segment of the population has access to computational devices, such as smartphones
and computers. However, the percentage of people programming these devices is still
low as it requires technical skills both in form of knowledge in programming languages
as well as in the problem domain. Program synthesis, where the aim is to generate
programs or code fragments from a user’s intent, can be used as an effective tool in
this scenario. The users can express themselves in a form that is natural to them,
similar in spirit to the way they command a personal assistant, thereby enabling
them to solve problems in an automated fashion without the need to design and
implement new algorithms. For instance, GitHub’s code-assistant Copilot1 enables
users to generate programs in unfamiliar programming languages, translate between
different programming languages or even summarize code, all by simply expressing
their intent via natural language instructions.

1https://githubnext.com/projects/copilot-view/



• Helping Programmers: The techniques mentioned above can help boost the pro-
ductivity of software engineers by helping them divert their attention from mundane
tasks to tasks which require more creative thinking. For example, code completion
tools in Integrated Development Environments (IDE) save programmers the trouble
of typing lengthy and repeatable code fragments without having the need to search
through the documentation.
• Advancing ML Research: The amalgamation of (a) domain constraints, (b) rigid

syntax, (c) discrete nature of code, (d) various symbolic representation forms (e.g.
abstract syntax trees, data, and control flow graphs), (e) intricate structure, (f) con-
tinually evolving nature (e.g. the introduction of new features and bug fixes), and (g)
a broad spectrum of downstream tasks with diverse objectives (e.g. defect localiza-
tion (Pearson et al., 2017), fuzzing (She et al., 2019), and code translation (Lachaux
et al., 2020)), presents unique challenges for the development of efficient ML models.

Deep Learning for Code (DL4C) has received a fair amount of attention in the last
decade (Allamanis et al., 2018a), yet arguably the recent application of large-scale language
modeling techniques to the domain of code holds a tremendous promise to completely revo-
lutionize this area (Chen et al., 2021; Austin et al., 2021; Anil et al., 2023; Fried et al., 2022;
Nijkamp et al., 2023b; Li et al., 2022). These techniques have significantly enhanced perfor-
mance in code-related tasks such as the generation of code from natural language descriptions
and code translation, leading to their integration into consumer-facing products (e.g. GitHub
Copilot2, Bard3, TabNine4). Despite their remarkable capabilities, these large language mod-
els (LLMs) might struggle to generalize to unseen code (Section 6.1 in Barke et al. (2023)
and Figure 1 in Agrawal et al. (2023); Ding et al. (2022)), leading to inaccuracies especially
when working with repositories that contain proprietary software or work-in-progress code.

The main emphasis of this thesis is to select relevant contextual cues from the given
task and leverage them effectively in deep learning models of code. Adding contextual cues
provides a way to expand the class of functions that the model can represent by introducing
information that it wouldn’t otherwise have access to based solely on the original input. Pro-
viding selected contextual cues also directs the model’s attention toward specific information
it should prioritize. Both these factors help in improving the generalization capability of the
models. Leveraging contextual cues can help in adapting to unseen tasks as well as improve
performance on existing tasks by making more context-aware predictions.

As an example of a specific use case, consider a scenario where a developer is working
within an IDE, editing a code file nested within her organization’s proprietary software
repository. Suppose our objective is to assist the developer by generating code completions

2https://github.com/features/copilot
3https://blog.google/technology/ai/code-with-bard
4https://www.tabnine.com/
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from her cursor’s position to the end of the line she is currently editing. Even though the
deep learning model that powers the IDE might be proficient in code completion by virtue
of it being trained on massive amounts of public code, the model might not be equipped to
handle unfamiliar patterns found in a private, work-in-progress repository. In order to make
accurate predictions, the model needs to understand both the local and global structure of
the repository files, their contents, the API dependencies, and any unique coding patterns
specific to the user, repository, or organization as a whole. One strategy to instill this
understanding in the model is to finetune it on the code from the current repository. However,
in certain scenarios, finetuning may not be possible due to black-box access to the model
or privacy concerns prohibiting access to available data. Moreover, finetuning is typically
computationally expensive and slow, rendering it impractical, particularly for continuously
evolving codebases. Therefore, it is crucial to devise approaches that can effectively harness
the prior knowledge embedded in pretrained deep learning models, as well as optimally
leverage the context available from the current task. This leads us to strategies that initially
identify and select relevant contextual cues, and subsequently, effectively incorporate them
into the model. In the use case presented above, one valuable contextual cue that can aid
in code completion could be the code present in other files in the repository, like method
names from the imported files or identifiers used in files present in the same directory as the
current file. Contextual cues could also be derived from signals collected from sources such
as interpreters (like execution states), API documentation, or even the history of commits
made by the developer.

1.1. Enhance-Predict: Our General Framework
In this section, we provide a more precise formulation of our problem setting and outline

our general framework that forms the basis of all the articles discussed in the thesis. Given
an input context X and some context meta-information W , our goal is to effectively harness
contextual cues based on X and W , such that the predicted target Ŷ aligns closely with the
actual target Y . The context meta-information W provides insights about the origin of the
input context X. Let us revisit our earlier example of code autocompletion where we are
given a position (cursor’s location) in a file and our task is to predict the rest of the line
that follows the cursor. The input context X consists of the code before the cursor in the
current file, while the actual contents of the tokens following the cursor form the target Y .
The context meta-info W may include the repository’s directory structure where the current
file resides, as well as the contents of all source code files within that repository. In this
thesis, we tackle this problem in two stages: (a) Context Enhancement ; and (b) Prediction
using the Enhanced Context.
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Context Enhancement The goal of this phase is to extract relevant signals from the
input context and the context meta-information, which can enhance task performance beyond
what’s possible using the input context alone. The extracted signals are referred to as the
support context Z. This stage can be expressed as follows:

Z = Enhance(X,W ) (1.1)

In the above equation, Enhance is a model inspired by the specific domain and task we are
addressing. For instance, in our code autocompletion scenario, Enhance could be a model
that selects the most suitable code snippet from all the files in the repository where the
current file resides, assisting in generating the correct completion. The selected code snippet
would constitute the support context Z. Combined, X and Z make up the enhanced context.

Prediction using the Enhanced Context The Predict module takes in the enhanced
context (X and Z) as input and gives the predicted target Ŷ as output. This stage can be
expressed as follows:

Ŷ = Predict(X,Z) (1.2)

In our code-completion example, Predict can be an LLM that takes in a concatenation of
the context prior to the cursor in the current file X along with the method names from the
first imported file Z as an input prompt and makes a prediction for the remaining tokens
following the cursor Ŷ .

Without Context Enhancement When support context is not obtained, the task
corresponds to taking the target context X and directly predicting the target Ŷ . This can
be expressed as follows:

Ŷ = Q(X) (1.3)

In our code completion example, this means that the LLM will take the context prior to the
cursor in the current file as input and produce the completion.

1.2. Thesis Overview
The thesis is composed of four articles, each focusing on various methods of identifying

and selecting relevant contextual cues, as well as different strategies for integrating these cues
into deep learning models for code. The first article focuses on the task of programming by
examples where the input-output (IO) examples given as part of the specification constitute
the input context X and the next step of the program that satisfies those examples constitutes
the target Y . The subsequent articles focus on the task of single-line code completion where
the context prior to the cursor in the current file constitutes the input context X and the
tokens after the cursor till the end of the line constitute the target Y .

Chapter 2 offers an overview of machine learning for code, discussing various code repre-
sentations, employed models, and applications in this domain. This is followed by a discussion
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Table 1. Summary of how the articles presented in the thesis fit within our general
framework. PE, CA, RLPG, and TSSA denote Per-Example, Cross-Aggregator,

Repo-Level Prompt Generator, Targeted Support Set Adaptation.

Article Input
X

Target
Y

Context
Meta-Info W

Support Context
Z Enhance Predict

Chapter 4 set of given
IO examples

line t of
the global
program

Same as X

PE solutions
+

execution states
of each line of
PE solutions

+
execution state
of line t− 1 of
global program

PE model
(for PE solutions)

+
code interpreter
(for execution

states)

CA

Chapter 6

few tokens
preceding the
cursor in the
current file

next token
after the
cursor

position of
the cursor

+
current file

support tokens
+

support windows

strategies based
on frequency of
occurrence of

tokens

TSSA

Chapter 8

all tokens
preceding the
cursor in the
current file

tokens after
the cursor

till the
end of line

position of
the cursor

+
current file’s
repository

context from a
single prompt

proposal predicted
by RLPG

list of
prompt

proposals
+

RLPG

Code LLM

Chapter 10

all tokens
preceding the
cursor in the
current file

tokens after
the cursor

till the
end of line

position of
the cursor

+
current file’s
repository

repo contexts
(e.g. contexts
from all the

prompt
proposals)

module for
obtaining the
repo contexts

RepoFusion

of the basic principles behind large language models of code including the transformer model
and prompting as a strategy to adapt these models for downstream tasks.

After an introductory prologue in Chapter 3, Chapter 4 presents our first article (Shri-
vastava et al., 2021). This article presents a novel approach to neural program synthesis by
dividing the programming by examples problem into two stages: (a) obtaining the support
context Z consisting of solutions that satisfy individual examples called per-example (PE)
solutions, their step-wise execution states, and the execution state of the previously gener-
ated line of the global program (a program that satisfies all examples), and (b) leveraging
the output from step (a) to learn a Predict framework called Cross Aggregator (CA) that
generates a prediction Ŷ for the next step of the global program.

After an introductory prologue in Chapter 5, Chapter 6 presents our second article (Shri-
vastava et al., 2020). This article proposes a Predict module called Targeted Support Set
Adaptation (TSSA) that is designed with the motivation of adapting the code model to the
local, unseen context. The module achieves this by retrieving targeted information tokens
(support tokens) from the current file, along with a few tokens preceding them (support
window), and leveraging this support context to update the parameters of the code model.
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As a result, the model is able to generate accurate predictions Ŷ for the token immediately
following the cursor.

After an introductory prologue in Chapter 7, Chapter 8 presents our third article (Shri-
vastava et al., 2022) that builds upon Chapter 6 to leverage contextual cues from the entire
repository based on a set of prompt proposals. These prompt proposals govern the location
and content of the support context based on the repository’s structure and code in relevant
files such as imports and parent class files. We introduce the Repo-Level Prompt Generator
(RLPG) module, that is trained to select a prompt proposal conditioned on the context
around the intended completion. The context derived from the selected prompt proposal is
then used to prompt a code LLM (Predict module), generating a prediction Ŷ for completing
the current line.

After an introductory prologue in Chapter 9, Chapter 10 presents our fourth article (Shri-
vastava et al., 2023) that builds upon the insights from Chapter 8. This article introduces
RepoFusion, a framework (Predict module) that learns to combine multiple relevant contexts
from the repository (referred to as repo contexts in Table 1, e.g. contexts from all prompt
proposals) in order to produce a prediction Ŷ for completing the current line. An example
of relevant contexts from the repository, referred to as repo contexts, includes the contexts
derived from all prompt proposals used in Chapter 8, without selecting a single context using
RLPG.

Chapter 11 presents a summary and broader impact of the contributions of the thesis
along with interesting directions to explore in the future.

Please see Table 1 for a comprehensive summary of how the articles featured in this thesis
fit within our general Enhance-Predict framework outlined in Section 1.1.

1.3. List of Excluded Contributions
During my PhD, I have had the opportunity to work on various projects focused on

out-of-distribution generalization, reinforcement learning, and human-computer interaction,
which, although not included in this thesis, provided valuable experiences and insights. Some
of these works are outlined below.

• Transfer Learning by Modeling a Distribution over Policies. Disha Shri-
vastava*, Eeshan Gunesh Dhekane*, Riashat Islam (ICML Workshop on Multi-
Task and Lifelong Reinforcement Learning 2019) [Shrivastava et al. (2019)].
We propose a transfer learning approach that encourages exploration in the target
environment by maximizing the entropy of a distribution over policies in the source
environment.
• Minimax and Neyman–Pearson Meta-Learning for Outlier Languages.

Edoardo Maria Ponti*, Rahul Aralikatte*, Disha Shrivastava, Siva Reddy, Anders
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Søgaard (Findings of ACL 2021) [Ponti et al. (2021)]. We propose two training
objectives (Minimax MAML and Neyman-Pearson MAML) that are better suited for
robust out-of-distribution transfer in low-resource languages.
• Approach Intelligent Writing Assistants Usability with Seven Stages of

Action. Avinash Bhat, Disha Shrivastava, Jin L.C. Guo (CHI Workshop on Intel-
ligent and Interactive Writing Assistants 2023) [Bhat et al. (2023)]. Inspired
by the cognitive model of Norman’s seven stages of action, we propose a framework
to guide the user interaction design of LLM-based intelligent writing assistants.
• Iterative Editing with AlphaCode. As part of my summer internship in 2022

at DeepMind , I worked on improving the performance of the AlphaCode (Li et al.,
2022) model for competitive programming problems by learning to iteratively edit
the generated programs.
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Chapter 2

Background

In this chapter, we present a brief overview of the field of Deep Learning for Code (DL4C),
which encompasses research at the convergence of machine learning, programming languages,
and software engineering. We start by discussing some distinctive characteristics of code that
motivate the development of specialized models dedicated to its analysis and understanding.
Next, based on the classification done in Allamanis et al. (2018a), we categorize different
machine learning models of source code and briefly explain them. This is followed by an
overview of some applications in this broad domain. Finally, we explore the realm of Large
Language Models (LLMs) for Code, delving into key concepts such as transformers and
prompting.

2.1. Uniqueness of Code
The naturalness hypothesis (Hindle et al., 2012) states that software corpora have similar

statistical properties to natural language corpora. Even though it might seem natural to
directly apply ML models for natural language to source code, there exist some important
differences between the two that motivate the need for developing separate models for source
code. First, the code is executable and more formal with clear syntax. This results in code
being highly sensitive to minor changes (e.g. changing the indentation or swapping the types
and/or order of arguments, etc.). On the other hand, natural language is more robust. A
reader can often comprehend the meaning of the text with minor changes. Second, the rate
of evolution of natural language is gradual, emerging through complicated social dynamics.
Software corpora, on the other hand, evolve quite fast with new features being rolled and bugs
getting fixed, as only a few designers control this aspect for many users. Also, neologism,
e.g. new names for identifiers, is extremely common in code as compared to natural language
where a person seldom uses new words to express a known concept.



2.2. Models of Code
A machine learning model of code commonly represents a probability distribution over

various properties or representations of code. Machine learning provides a systematic way to
handle the uncertainty (via probabilities) and assimilate different code representations (e.g.
token-level representation, AST, execution traces, etc.). Below, we group these models based
on their mathematical form, along with their inputs and output types. This categorization
is taken from Allamanis et al. (2018a).

2.2.1. Code-Generating Models

Code generative models capture the generative process of code. Given an output code
representation Y , and a possibly empty context X, these models learn the probability distri-
bution P (Y |X). During inference, one can sample from P to generate code. Depending on
how code is represented, we may have: (a) token-level or sequence models which view code
as a sequence of code tokens, subwords or sentence pieces (Hellendoorn & Devanbu, 2017a;
Karampatsis & Sutton, 2019); (b) syntactic models that model code at the level of abstract
syntax trees (ASTs) (Alon et al., 2019; Bielik et al., 2016); and (c) semantic models which
model the code as a graph, generalizing sequence and tree-based models (Li et al., 2015).
Code-generating models can also be used in a scoring function, assigning probabilities to
fragments of code.

Let’s discuss a bit more about two sequence models which will be of interest to us in
the rest of the thesis. Token-based sequence models usually view code as a sequence of
elements, usually tokens, characters, or subwords, i.e. Y = y1, . . . , yM . Predicting a large
sequence in a single step is intractable due to the exponential number of possible sequences
(for a vocabulary with V elements, there are |V |N sequences of length N). Therefore, most
sequence-based models predict sequences by generating each element one after the other, i.e.
they model the probability distribution P (ym|y1, . . . , ym−1, X). Formally, we can write this
as follows:

P (Y |X) = P (y1, . . . , yM |X) =
M∏

m=1

P (ym|ym−1, ym−2, . . . , ym−n+1, X) . (2.1)

In the above equation, for practical reasons, the generated sequence so far is assumed to
depend only on the previous n − 1 tokens. When X = ∅, we refer to such a model as a
language model. On the other hand, if X = S where S can be the representation of
another piece of code (which may or may not be of the same form as Y ), we refer to this
model as a sequence to sequence or seq2seq model. The probability distribution P can
be modeled by a machine learning model. Neural seq2seq models consist of encoder and
decoder modules. The encoder takes as input a context representation S and the decoder
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produces the output code representation Y . The information from the encoder to the decoder
is transferred via hidden states, which can store the information about previous tokens apart
from the n− 1 tokens in the current context. Note that the generated code produced from
P (say, via techniques like beam search), is not always guaranteed to compile and execute.
However, some external constraints can be enforced on the output to achieve that, e.g.
Maddison & Tarlow (2014) generate variables declared only within each scope.

In earlier seq2seq models such as LSTM (Hochreiter & Schmidhuber, 1997) or GRU (Cho
et al., 2014), at each step of generation, the decoder considers only the last hidden state of the
encoder as context. However, to effectively capture long-range dependencies, the attention
mechanism (introduced by Bahdanau et al. (2014) in the context of machine translation)
enables the decoder to examine all hidden states of the encoder. When translating a French
sentence to English, this means that for generating each word in the output English sentence,
the decoder weights the input tokens based on a score that is indicative of the level of
attention that should be given to them. Mostly, the scores are calculated by taking a dot
product of the decoder hidden state of the previously generated English word (query) with
the encoder hidden states for each word in the input French sentence (keys). Scores are
normalized across input positions using a softmax activation function to produce attention
weights. The attention weights are then used to compute a weighted sum over the encoder
hidden states (values) to obtain a context-aware representation of the French sentence. Note
that the score between queries and keys can be computed in parallel. Later, Vaswani et al.
(2017a) proposed a new model architecture based entirely on the attention mechanism, called
the Transformer. We discuss Transformers in more detail in Section 2.4.1.

2.2.2. Representational Models

To predict code properties that may be directly useful for downstream tasks, researchers
have built models to learn intermediate representations of code, f(X) where f is a function
that transforms code into an intermediate representation (which may not be human inter-
pretable). This representation is then used to learn a conditional probability distribution
of a code property λ as P (λ|f(X)), e.g. λ can be the type of a variable. These models
may be based on distributional representations where the elements being represented and
their relations are encoded within a multidimensional real-valued space and the similarity
between two representations can be measured within this space (Allamanis et al., 2015; Feng
et al., 2020; Li et al., 2015) or based on structured prediction wherein models predict a set
of structured objects (Raychev et al., 2015; Proksch et al., 2015) or a combination of both.
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2.2.3. Pattern Mining Models

Pattern mining models are unsupervised machine learning models which tend to discover
patterns like clusters or groupings in source code, which can then be better understood by
software engineers. These models learn a probability distribution, P (X) =

∑
z P (X|Z =

z)P (Z = z) where Z represents a set of latent variables that represent the grouping. Applica-
tions of these models are common in the mining software repositories community and include
documentation (e.g. API patterns) (Fowkes & Sutton, 2016) and summarization (Fowkes
et al., 2017).

2.3. Applications
Below we provide a categorization (with loose boundaries) of prominent application areas

of DL4C, based on the level of interaction with the end user.

2.3.1. Improving Programming Experience or Front-End

These applications try to improve the coding experience of an end-user. They include
systems that make recommendations to assist software engineering tasks like code autocom-
pletion in an IDE (i.e. inferring a user’s intent in order to recommend future code) and
suggesting likely code reviewers for a given code change. They involve tasks like inferring
coding conventions (e.g. variable naming), detecting bugs by predicting the exact span of
tokens where the bug is present as well as suggesting a fix for that bug, detecting code
clones, and code refactoring. In each of these applications, the machine learning models can
be adapted to give personalized fixes, recommendations, and code refactoring suggestions
by learning models from user-specific code edit patterns or patterns from related users who
operate in the same project.

2.3.2. Improving Programming Tools or Back-End

This category includes applications that focus on developing techniques for improving
general programming tools. Program analysis is an important area in this category that
analyses the behavior of computer programs for a property like correctness, robustness, and
safety. It includes the development of tools for program verification, formal automated
proof, or learning appropriate parameterization of a static analysis tool by inferring the
data-flow information from code. Another application in this category is linking code with
documentation (text that captures requirements, specifications, and descriptions of code) to
be used in code search engines (where a query can be in natural language).
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2.3.3. Program Synthesis

The goal of a program synthesis system is to produce one or more programs that satisfy
a given specification. The process of program synthesis can be described in terms of the
following key constituents:

• Specifications: The user specifications can take multiple forms, with some of them
being input-output examples, natural language statements/keywords, formal state-
ments describing the behavior of the program (e.g. ∀x : y = 3∗x), and demonstrations
in the form of 2D/3D graphic renderings (Ellis et al., 2019b). The specification should
be such that it explains the problem properly but it isn’t as detailed as the program
for which the specifications are to be met.
• Domain Specific Language (DSL): Program synthesis systems are usually charac-

terized by a domain-specific language (DSL) which can be thought of as the language
which is followed for synthesizing programs. A DSL is defined as a context-free gram-
mar consisting of a set of terminal symbols, a set of non-terminal symbols, a start
symbol and a set of production rules for expanding the non-terminal symbols. Se-
mantically, each symbol in the DSL can be interpreted as ranging over a set of values
and each production rule can be interpreted as a function. Similar to specifications,
the DSL should be expressive enough to capture the problems that we wish to solve.
At the same time, it should be more restrictive than full programming languages to
limit the difficulty of the search.
• Search: The core challenge in program synthesis is to search the vast space of possible

programs to find the ones that comply with the specifications. One basic example
of a search procedure is the top-down enumerative tree search, where a brute force
search is performed over the space of possible programs by enumerating all possible
derivations in the grammar specified by the DSL and maintaining an ordered list of
partial derivations in a top-down manner starting from the start symbol in the DSL
as the root. In this simplest form, at depth k of the tree, we explore all expressions
of the form function(arg1, arg2), where arg1 and arg2 are placeholders for
expansions of non-terminals in the partial derivations until depth k-1 and function
denotes production rule. This recursive search is going to be exponential in the depth
k. We can prune the search space by expanding only those branches of the search
tree which produce unique outputs for the partial derivations obtained until now,
thereby removing redundant branch traversals. In recent years, some neural-guided
approaches (Balog et al., 2016; Zohar & Wolf, 2018) have also been proposed, where
the probabilities from a neural network are used to order the nodes in the search tree.
• Ranking: In certain cases, there may be more than one candidate program that can

meet the specifications. In these scenarios, a secondary problem is then to rank the
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candidate programs based on task-dependent criteria such as favoring conciseness by
scoring shorter programs higher than longer programs.

2.4. Large Language Models of Code
In this section, we provide a brief overview of Large Language Models (LLMs) along

with the basic concepts needed to understand them. Large Language Models are language
models (see Section 2.2.1) that contain a large number of parameters (typically of the order
of millions or billions) and are trained on massive amounts of data from the Internet such as
Wikipedia, Common Crawl or GitHub. LLMs are typically based on neural networks called
transformers, which we describe below.

2.4.1. Transformers

Vaswani et al. (2017a) proposed a new model architecture based entirely on the atten-
tion mechanism, called the Transformer. An important concept in Transformers is the notion
of self-attention, which involves calculating attention weights between the encodings of the
same sequence. In self-attention, the query and keys are derived from the same sequence,
as opposed to coming from different sequences. This work expresses attention as a function
of three tensors, Q,K and V, that correspond to the queries, keys and values, respectively
(Equation 2.2). To capture information from different representation subspaces, the atten-
tion function is calculated on different projections of the queries, keys and values. The
outputs of the application of the attention function to different projections (called heads)
are concatenated and combined. This procedure is referred to as multi-head attention (see
Equation 2.3).

Att(Q,K,V) = softmax
(QKT

√
dk

)
V (2.2)

MultiHead(Q,K,V) = concat(headi, head2, . . . headτ )WO

where headi = Att(QWQ
i ,KWK

i ,VW V
i ) (2.3)

In these equations, dk is the dimension of the key, WQ
i ,WK

i ,W V
i are the query, key

and value projection matrices for headi, τ is the number of heads and WO is the linear
projection that combines the heads. The output from Equation 2.3 is fed to a positionwise
fully-connected feedforward network. A residual connection (He et al., 2016) followed by
layer normalization (Ba et al., 2016) is applied before and after the feedforward network.
These series of operations are represented in the form of an attention block.

Figure 1, taken from Vaswani et al. (2017a), represents the transformer encoder-decoder
architecture. Both the encoder and decoder modules are comprised of stacking multiple
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Fig. 1. This figure taken from Vaswani et al. (2017a) represents the architecture of a
Transformer encoder-decoder model.

attention blocks. The encoder uses self-attention to establish associations between tokens
of the input sequence while the decoder uses a causal self-attention that attends only to
the previously generated tokens via masking the future tokens. The decoder also has cross-
attention (as discussed before) where the keys and values come from the encoder whereas
the query is the output from the previous attention block in the decoder. In order to model
the word order in sequences of text, transformers use a fixed encoding that corresponds to
a position in the sequence. These position encodings are added to the inputs of both the
encoder and the decoder.

The Transformer model achieves parallelization as well as faster training and inference
by attending to multiple parts of the input sequence simultaneously, eliminating the need for
sequential processing. In recent years, transformers have revolutionalized the field of natural
language processing by demonstrated state-of-the art performance in tasks such as machine
translation, text summarization and question-answering (Brown et al., 2020a). Transformers
have also been used with massive success for applications involving source code such as code

14



completion, program synthesis, code summarization and code translation (Chen et al., 2021;
Li et al., 2022; Austin et al., 2021; Nijkamp et al., 2023b).

2.4.2. Pretraining

The general idea behind pretraining is to train a model on massive amounts of data
(e.g. text) to learn the statistical patterns and general knowledge present in that data. This
pretraining step is typically performed on a large-scale dataset, such as a large portion
of the Internet or a vast collection of books or code in all of GitHub, which provides a
diverse range of syntactic and semantic contexts and helps learn a general understanding of
language or code. Since transformers excel at processing intricate and extensive datasets,
exhibit favorable scalability with increasing model parameters and data (Kaplan et al., 2020)
and are suitable for use with modern compute hardware owing to parallelization, they have
become a prominent choice for use as pretraining models. Based on the architecture and
pretraining objectives, there are broadly three variants of the transformer model that have
emerged over the years.

• Decoder-only: Decoder-only models consist of a single decoder that performs an
autoregressive, left-to-right processing and generation of tokens. The pretraining ob-
jective here usually corresponds to the standard language modeling objective (see
Section 2.2.1) that corresponds to predicting the probability of the next token given
the previous tokens. Some examples of these models applied to code modeling are
Codex (Chen et al., 2021), Codegen (Nijkamp et al., 2023b), Google’s program syn-
thesis model (Austin et al., 2021), GPT-J (Wang & Komatsuzaki, 2021), and In-
coder (Fried et al., 2022). While these models trained on autoregressive language
tasks, such as code completion, excel at generating code, the left-to-right nature of
these tasks does not always align with the programming process in an IDE. To address
this, modifications to the pretraining approach, such as Fill-in-the-Middle (Bavarian
et al., 2022), have been proposed. This method involves transforming the dataset
by moving code spans from the middle of the file to the end. This allows the au-
toregressive models to learn to infill code, hence enabling them to better capture the
non-linear nature of programming (Allal et al., 2023; Li et al., 2023).
• Encoder-only: Encoder-only models typically employ a single encoder that in-

corporates bidirectional encoding of the context, as opposed to the unidirectional
(left-to-right) approach. These models use a masked language modeling objective
for pretraining (first introduced in BERT (Devlin et al., 2018)), which corresponds
to predicting masked tokens based on the surrounding context. Some examples of
these models applied to code modeling are CodeBERT (Feng et al., 2020) and Cu-
BERT (Kanade et al., 2020). The representations from these models serve as useful
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general representations of code that can be employed for downstream tasks such as
code classification, and clone detection.
• Encoder-Decoder: As described in Section 2.2.1, these class of seq2seq models

consist of separate encoder and decoder modules. The encoder typically uses a bidi-
rectional encoding of the context while the decoder uses this context obtained from
the encoder to autoregressively decode either the next token or a series of masked
tokens in order. Some examples of these models applied to code modeling are Alpha-
Code (Li et al., 2022) and Code-T5 (Yue Wang, 2021). The latter in addition to the
above mentioned pretraining objectives also uses a denoising sequence reconstruction
objective (Lewis et al., 2019). These models perform well in conditional seq2seq gen-
eration tasks such as code translation, code summarization and generation of code
given a natural language comment.

2.4.3. Prompting

Once the pretraining phase is completed, the pretrained language model can be further
finetuned on specific downstream tasks. Finetuning involves training the model on a smaller
dataset that is more specific to the target task. However, as mentioned in the Introduction
(Chapter 1), in certain scenarios, finetuning may not be a feasible or practical approach due
to various factors such as limited availability of labeled data required to achieve satisfactory
performance on the target task, limited or no access to the pretrained model weights, or
the computational cost associated with finetuning models that contain millions or billions
of parameters, particularly in the case of pretrained large language models (LLMs). As
an alternative to this pretrain-finetune paradigm, prompting has emerged as an effective
strategy to instill the knowledge of the downstream task into the LLM. A prompt refers to
an input provided to a model that allows the model to generate predictions related to the
desired task. Prompting involves utilizing the knowledge encoded in the pretrained weights of
an LLM to facilitate the downstream task without the need to finetune the model weights.
The task can be specified in the form of a prompt, which can take the form of natural
language instructions or demonstrations of desired input-output mappings using example
data. Prompting has demonstrated promising results in various scenarios, including cases
where only a few examples or even no examples at all (referred to as zero-shot) are available,
showcasing the promise of prompting as a strategy to generalize across diverse tasks (Brown
et al., 2020a).

Besides providing a mechanism to control and evaluate a language model, prompts have
been shown to elicit emergent behaviour as well. Examples of this behavior include GPT-
3 (Brown et al., 2020a) doing better in tasks it has never seen during training and improved
reasoning capabilities with few-shot (Wei et al., 2022) and zero-shot (Kojima et al., 2022)
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prompts that encourage a chain of thoughts. These factors highlight the importance of
designing an effective task-specific prompt.

There has been some work toward automatic prompt generation techniques. This in-
cludes techniques that correspond to producing continuous/soft prompts where the prompt
is described in the latent space of a language model (Li & Liang, 2021; Qin & Eisner, 2021;
Bragg et al., 2021; Lester et al., 2021; Liu et al., 2021b) and techniques that produce dis-
crete prompts where the prompt is a text string that can be interpreted by a human (Shin
et al., 2020; Gao et al., 2021; Schick & Schütze, 2021). Please see (Liu et al., 2021a) for a
comprehensive survey of different prompting techniques.

17



Chapter 3

Prologue to the first article

3.1. Article Details
Learning to Combine Per-Example Solutions for Neural Program Synthesis.

Disha Shrivastava, Hugo Larochelle, Daniel Tarlow. This article (Shrivastava et al., 2021) was
accepted for publication at the Neural Information Processing Systems (NeurIPS)
2021 .

Personal Contribution The inspiration for the work came from FrAngel (Shi et al., 2019),
a program synthesis framework that iteratively refines a program by mining fragments of Java
code from partial solutions, based on a set of rules and predefined heuristics. Daniel Tarlow
suggested the potential value of employing this intuition of leveraging cues from the partial
solutions in tandem with neural program synthesis frameworks. Hugo Larochelle and Daniel
Tarlow proposed initial investigative studies that proved fundamental in establishing that it is
easier to find programs that satisfy examples partially and there is value in aggregating these
partial solutions. Motivated by the efficacy of PCCoder (Zohar & Wolf, 2018), we decided to
leverage the step-wise execution state of these partial programs to guide their aggregation.
Disha Shrivastava was involved in writing all of the code, running the experiments, coming
up with the model that aggregates the partial solutions, and writing significant parts of the
paper. Hugo Larochelle and Daniel Tarlow advised on the project and were involved in the
discussion of results, suggesting experiments to run, writing parts of the paper, and offering
constructive critique during the drafting and revision phases of the paper.

3.2. Context
The goal of program synthesis from examples is to find a computer program that is

consistent with a given set of input-output examples. Most learning-based approaches try to
find a program that satisfies all examples at once, which under most settings can be hard.
Our work, by contrast, tries to find this program in parts. To understand this motivation,



imagine a process wherein a programmer is asked to write a program that satisfies a set of
unit test cases. They may begin by figuring out a program that satisfies a subset of unit test
cases first, and later modifying the program to incorporate other corner cases. We consider
an approach that breaks the problem into two stages: (a) find programs that satisfy only one
example, and (b) leverage these per-example solutions to yield a program that satisfies all
examples. For the second stage, we propose a neural architecture which we term as the Cross
Aggregator. In terms of the broader theme of the thesis (see Section 1.1), for synthesizing
one line of the global program (target Y that meets the given specifications), the support
context Z is provided by the per-example solutions along with their corresponding step-
wise execution states as well as the execution state of the previously generated line of the
global program. Our proposed Cross Aggregator model serves as the Predict module. The
subsequent chapter (Chapter 4) discusses this work in detail.

3.3. Contributions
The paper proposed a novel approach called Neural Per-Example Program Synthesis

(N-PEPS) that uses neural networks to first find per-example solutions and then learns to
combine the cues present in these per-example solutions to synthesize a global solution. For
the latter, the paper introduces the Cross Aggregator neural network module based on a
multi-head attention mechanism. Evaluation across programs of different lengths and under
two different experimental settings revealed that when given the same time budget, the
proposed technique significantly improved the success rate over PCCoder (Zohar & Wolf,
2018) (one of the leading techniques for neural program synthesis at the time) and other
ablation baselines. In addition, we open-sourced the code, data, and trained models for the
work to facilitate future research in this direction.

3.4. Research Impact
The general idea of this work is breaking down a complex problem into simpler sub-

problems, learning the solutions of the sub-problems, and then automatically combining the
solution of these sub-problems. We employed the concept of iterative program generation by
capitalizing on the execution states of partial solutions. In the context of program synthesis,
at the time, this was the only work that used neural networks to automatically learn to
combine partial solutions. Another important aspect of the work was our unique experimen-
tal configuration, which involved a substantially shorter timeout of 5 seconds as compared
to the previous works such as Zohar & Wolf (2018) with longer durations such as 5000 or
10000 seconds. This particular feature, coupled with our strong empirical results enhances
the appeal of our framework for real-world, interactive implementations of program synthesis
systems. Recently, in the context of Large Language Models (LLMs), our idea would involve
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using the LLM to generate a partial solution either for each example or for each sub-problem
using techniques akin to PAL (Gao et al., 2022). These partial solutions along with their
associated execution traces can then serve as input to the LLM, prompting the synthesis of
a complete program.
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Chapter 4

Learning to Combine Per-Example Solutions for
Neural Program Synthesis

4.1. Introduction
Program synthesis from examples tackles the problem of coming up with a computer

program that satisfies a given set of Input-Output (IO) examples. Since the space of pos-
sible programs is large, an exhaustive search can be extremely time-consuming. Therefore,
development of systems for program synthesis that can come up with a solution (program
satisfying the given IO examples) within a limited time, such that it is practical for real-world
applications, is a challenging task.

Neural-guided program synthesis systems (Balog et al., 2016; Zohar & Wolf, 2018) try to
expedite the search by using a neural network conditioned on the IO examples as a learned
heuristic for the search procedure. In these systems, a neural network outputs probabilities
over programs or properties of programs (e.g. functions). These probabilities are then
utilized to guide a search like depth-first or beam search. These systems try to find a program
that satisfies all IO examples simultaneously, which under most of the settings can be hard.
What if instead, we try to find this program in parts? To understand this motivation,
imagine a process wherein a programmer is asked to write a program that satisfies a set of
unit test cases. They may begin by figuring out a program that satisfies a subset of unit
test cases first, and later modifying the program to incorporate other corner cases. Shi et al.
(2019) uses this intuition to iteratively refine a program by mining fragments of Java code
from partial solutions, based on a set of rules and predefined heuristics. Gupta et al. (2020)
also uses the same intuition, but in a different application for program repair. In this work,
we consider breaking the complex problem of finding a program that satisfies all N given
IO examples (called the global solution) into N smaller, easy to solve sub-problems, where
each sub-problem involves finding a program satisfying only one IO example (called per-
example solution). The cues present in these per-example (PE) solutions are then combined



Fig. 4.1. Figure explaining the idea of N-PEPS: (Left) Illustrating the two stages
of N-PEPS with an example; (Right) Synthesizing line 2 of pg using contributions from

CA and GPS, with details of how query, keys, values and relation scores are formed. White
box shows an example of obtaining a PE state embedding.

to provide useful signals that can help guide the search for the global solution effectively.
As a motivating example, consider the left part of Figure 4.1, where five IO examples are
given as a specification (green box) and we need to find a global solution pg (red box) that
satisfies these five examples. The first stage of our approach consists of performing per-
example searches to find a program pi conditioned on the i-th IO example. In our example,
we start from IO example #1 and find program p1. In addition, we also check if p1 satisfies
any other examples (#3 in figure). Iterating through the examples in this way results in
a set of programs (p1, p2, p3) that, taken together, in the ideal scenario, would satisfy all
five IO examples. Looking closely at the discovered PE solutions, we see that they contain
fragments of the global solution. This brings us to the second stage of our approach that
addresses the challenge of how best to aggregate these PE solutions to produce a global
solution. Towards that goal, we propose a neural network based architecture, which we refer
to as Cross Aggregator (CA). It is designed to learn to combine the cues present in these
PE solutions, in a way that helps guide the search for pg. We model this aggregation using
a multi-head cross-attention mechanism, which leverages the state of step-wise execution of
the PE solutions and the synthesized global solution so far (see Section 4.3.2 for details).
Our key contributions can be listed as follows:

• We consider breaking the standard program synthesis pipeline into two stages: (a)
discovering PE solutions, and (b) aggregating the PE solutions such that it leads to
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a global solution. We refer to our approach that uses neural networks at both these
stages as Neural Per-Example Program Synthesis (N-PEPS).
• We propose a neural network based multi-head attention architecture called Cross

Aggregator (CA) that makes use of step-wise execution information to learn to com-
bine the PE cues such that it helps guide the search for the global solution.
• We demonstrate via experiments with programs of different lengths and under two

different evaluation settings that when given the same time budget, our formulation
shows significant improvements in success rate when compared to PCCoder (Zohar
& Wolf, 2018) (one of the leading techniques for neural-guided program synthesis)
and other ablation baselines.

4.2. Background
Suppose we are given a set X = {(xi, yi)}Ni=1 = {ri}Ni=1 of N IO examples and our task

is to come up with a program pg that satisfies these examples. The i-th IO example ri

consists of a pair of input xi and output yi. The program consists of T lines (excluding
lines with input variable declarations), i.e. pg = [ptg]

T
t=1. To be practically meaningful, we

impose the constraint that pg has to be found within a given time budget, specified by a
timeout value. The syntax and semantics of pg are governed by a domain-specific language
(DSL). We use the DSL provided by Balog et al. (2016), which contains first-order functions
(e.g. SORT, REVERSE) and higher-order functions (e.g. MAP, FILTER) that can take lambda
functions (e.g. (*4), (<0)) as input. The inputs and outputs can be either an integer or a
list of integers (see Appendix F of Balog et al. (2016) for more details about the DSL). The
Predict and Collect Coder (PCCoder) (Zohar & Wolf, 2018) provides state-of-art results for
this DSL and is illustrative of methods that directly solve for all available IO examples at
once. We refer to these methods as Global Program Synthesis (GPS). We will be building
on PCCoder to propose our per-example approach.

4.2.1. PCCoder

PCCoder synthesizes programs one line at a time, through a model based on the notion
of a program state. The program state is a two-dimensional memory of size N × (ν + 1)

obtained during the execution of t lines (steps) of a program on a set of N inputs. This means
that for each IO example ri, there are up to ν slots for storing the input and intermediate
program variables, with an additional slot for storing the output (see Appendix 4.A.2 for
more details). Note that the initial state at t = 0 consists of only the IO examples (see left
part of Figure 4.2).
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Fig. 4.2. Figure explaining the idea of PCCoder: (Left) Sample program along
with two IO examples that forms the program state at t = 0; (Right) Block Diagram

explaining the training of PCCoder at line 2 of the program.

PCCoder consists of two learnable components (i.e. neural networks), Hθ and Wϕ, with
parameters θ and ϕ. Hθ obtains the embedding of the current program state by average-
pooling the representation of the ν + 1 slots corresponding to individual examples (white
boxes inside the state in Figure 4.2) into a vector of fixed size in RZ , where Z denotes
the embedding size (see Appendix 4.A.2 for details of how these representations of slots
are obtained). Wϕ maps this state embedding to predictions of three quantities of interest
for the next line in the program: (a) the next operator ôt (or function e.g. MAP); (b) the
next statement ŝt (operator along with its arguments e.g. MAP(/2) b); and (c) next drop
vector d̂t which represents positions of variables that can be dropped from the state. The
dropping is desirable as it creates slots for storing new variables, which in turn allows for
synthesizing longer programs. There is a module called DropExec which executes a given
line of the program against an example ri and stores the resulting variable ci in the next
available slot in the state. If all ν slots in the state are filled, a variable is dropped from one
of the slots using the drop vector and ci is stored there. The updated state can then be used
for predicting the next line (see right part of Figure 4.2). Next, we provide details of how
training and inference is done in PCCoder.

Training: For training Hθ and Wϕ, several instances of a specification X and the ground-
truth program pg are provided. Given an instance and line t of the program, training operates
by obtaining the ground-truth values of statements (st), operator (ot) and drop vector (dt).
The statement and operator values are represented as one-hot vectors of size equal to the
number of statements (ns) and number of operators (no), respectively in the DSL. The drop
vector is a multi-hot vector of size ν with ones at positions corresponding to the variables
in the program that can be dropped, i.e. variables that don’t appear in subsequent lines in
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the program. The step-wise loss L is the sum of cross-entropy losses between the actual and
predicted statement and operator, and the binary cross entropy loss between each position
in the actual and predicted drop vector. The task of predicting the operator is an auxiliary
task, i.e. it is used only during training and not at inference time, and is found to improve the
training performance. During training, to obtain the updated state, the DropExec module
chooses the drop-index to be a random entry from those positions in the drop vector dt that
are ones. The right part of Figure 4.2 illustrates the process of training at step 2.

Inference: Inference is done using complete anytime beam search (CAB) (Zhang, 1998)
where the time for search is upper bounded by the timeout value. The CAB algorithm
operates by performing different beam searches repeatedly in an outer loop. The pruning
conditions of the beam search (i.e., beam size, expansion size) are weakened with each
iteration of the outer loop, until a solution is found. The inner loop consists of different steps
of a single beam search. At each step, the beam consists of the most promising program
prefixes, with each prefix represented as a tuple of the current program state, synthesized
program until now and the product of the probabilities of the statements in the synthesized
program. To synthesize the next line of the program, prefixes are expanded by executing the
statements in decreasing order of statement probabilities and taking the argmax of the drop
vector probabilities. The statement and drop vector probabilities are obtained using the
trained neural networks Hθ and Wϕ. The search terminates if we find a candidate program
prefix that satisfies all N IO examples. The corresponding program is the synthesized global
solution pg. Note that the search may fail and not discover a global solution within the
specified timeout. Appendix 4.A gives details of training and inference procedures, and
modules of PCCoder.

4.3. Neural Per-Example Program Synthesis (N-PEPS)
As stated in Section 4.1, in this work, we decide to break the complex problem of finding

a global solution pg that satisfies all N IO examples, into N smaller sub-problems. Each sub-
problem aims to find a program pi that will satisfy only the IO example ri. The cues present
in these PE solutions are then aggregated to help guide the search for pg. We constrain the
process of breaking and combining to fit within the specified timeout value. The distribution
of total timeout between these stages is treated as a hyperparameter. In this section, we
discuss our process of finding PE solutions and follow it with a description of our neural
network module that learns to combine the PE solutions.

4.3.1. Per Example Program Synthesis

We refer to the general framework of finding PE solutions first and later aggregating
the PE cues to find a global solution, as Per-Example Program Synthesis (PEPS). We call
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the module that finds PE solutions as the PE Searches module. To train the PE Searches
module, we use the PCCoder model as it is, except that it is trained to take a single IO
example as input as opposed to all the examples in X. We will call this trained model as
the PE model. We allocate a fixed value of PEPS timeout, which is the maximum time given
to find each PE solution. The sum of PEPS timeouts across all PE solutions should be less
than the total timeout, so that there is some time left for the CA module to aggregate the
PE cues (i.e., N× PEPS Timeout < Total Timeout). We start from the first example, and
using the PE model, try to find a solution that satisfies it. Once found, we also check if this
solution satisfies other examples in X. We record the fraction of IO examples satisfied by
pi, and call it the PE solution score ui. If pi satisfies all examples in X (i.e. ui = 1.0), we
stop and return pg = pi as the global solution. Otherwise, we proceed to find the next PE
solution (based on the order of examples given in X). Note that it is possible that for certain
examples in X, we fail to find a PE solution within the PEPS timeout. Once we have our
list of M PE solutions (0 ≤ M ≤ N), which ideally satisfies all N examples but may not
necessarily, we proceed to aggregating them. Note that when comparison with baselines is
not a requirement, we can increase speedup by finding PE solutions in parallel (see Appendix
D.1 for more details).

4.3.2. Cross Aggregator

Notation: To formulate the program state, we define a basic unit called an execution
tuple (ET). An ET e = (p,S, t) is a tuple consisting of a program p, a subset S of example
indices in X and a step number t. Executing the first t steps (lines) of a program p on
every example ri for i ∈ S yields a program state which we note as X (e). Like PCCoder,
we pool the representation of slots of the state corresponding to each example ri for i ∈ S
to obtain a state embedding (see Section 4.2.1), hence making its size independent of the
size of S. To represent different combinations of programs executed against different sets
of examples at different time steps, we define a list e of such execution tuples, with its size
denoted by L. (p1, {1}, 0) and (p3, {2}, 2) in the bottom right of Figure 4.1 are examples
of such combinations. We then execute each entry in e to get a list of states X (e). This
is followed by embedding each entry in states X (e) using Hθ to yield a tensor of state
embeddings H(X (e)) ∈ RL×Z (henceforth referred to as H(e) for simplicity). The white
box towards the bottom of Figure 4.1 shows an example of obtaining a single entry of a PE
state embedding.

Motivation: To explain the motivation behind CA, let’s look at Figure 4.1, which
illustrates the process of synthesizing line 2 of pg. Intuitively, at this step, we will want our
aggregation mechanism to have more contribution from line 2 of p1 and p3 (i.e., DROP c a).
A simple way of aggregating the PE solutions can be to take the sum or mean of the PE
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one-hot statement vectors (these form our ablation baselines as detailed in Section 4.4.2).
However, this strategy will fail for scenarios that require taking a non-trivial combination of
the PE solution statements or cases where the global solution requires the generation of a
new statement that is not found in the PE solutions.

In this work, we propose another way of anticipating what line of pg comes next, that
makes use of the execution information of the programs. The idea is to compare the state
embedding obtained before executing line 2 of pg with the PE state embeddings corresponding
to each step of execution of the PE solutions. Then, based on the learned relevance of these
state embeddings, their corresponding next PE program statements can form valuable cues
for synthesizing the next line. In other words, if a particular PE program state has high
relevance with the global program state at a given step, then the following PE program
line is likely to be useful in synthesizing the next line of pg. We measure this relevance by
employing a cross-attention mechanism, with the query formed by the global program state
embedding at step t, a key formed by the PE program state embedding at step t and the
corresponding value formed by the PE program statement at t + 1. We take a set of such
keys and values to form the key matrix K and the value matrix V, respectively.

Model: For synthesizing line t + 1 of pg, the query Q is formed from the global state
embedding at step t, denoted by H(etquery) ∈ R1×Z , where etquery = [(pg, {1, 2, . . . N}, t)].
The keys K ∈ RL×Z are formed from the state embeddings H(ekeys) of the PE solutions.
Let P denote the list of M discovered PE solutions, then the list of execution tuples ekeys =
[(pm, {j}, t)], where pm ∈ P, j ∈ {1, 2, ..N}, t ∈ {0, 1, ..|pm| − 1}, making L = M × N ×∑M

m=1 |pm|. The corresponding PE solution statements form the values V ∈ RL×Z (more
details on how values are obtained is given later). In addition, we have the relation scores
U ∈ RL×1 obtained by taking the PE solution score um corresponding to pm that is part of
each ET in ekeys. Note that entries in U are dependent only on the program part in the ET,
and independent of the subset of example indices and the time index.

Att(Q,K) =
QKT

√
dk

(4.1)

RelAtt(Q,K,V) = softmax
(UT + Att(Q,K)

2

)
V (4.2)

MultiHead(Q,K,V) = concat(headi, head2, . . . headτ )WO (4.3)

where headi = RelAtt(QWQ
i ,KWK

i ,VW V
i )

We add position encodings (depending on the time step value of each ET) to Q, K and V.
This is followed by multiheaded relative attention between our keys, values and query as de-
scribed in Equation 4.3. For each head, we perform a scaled dot-product attention (Vaswani
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et al., 2017b)(Equation 4.1) and a form of relative attention1, i.e. taking a mean of the
relation scores and attention scores before normalizing with softmax and multiplying with
values (Equation 4.2).

In these equations, dk is the dimension of the key, WQ
i ,WK

i ,W V
i are the query, key

and value projection matrices, τ is the number of heads and WO is the linear projection
that combines the heads. The output from Equation 4.3 is fed to a positionwise fully-
connected feedforward network. We employ a residual connection (He et al., 2016) followed
by layer normalization (Ba et al., 2016) before and after the feedforward network. The
resulting encoding is then linearly projected and softmax is applied to get the prediction
of the statement for line t + 1 of pg. We see that our model resembles one layer of the
transformer encoder block (Vaswani et al., 2017b). Since the keys and query come from
different sources, we refer to our model as a cross aggregator. Like standard transformers,
we can stack multiple blocks of CA. However, since we are operating on a low timeout (5s),
we opted for a simple network consisting of only one layer. Details of model parameters can
be found in Appendix D.3.

Obtaining V: For a key corresponding to an ET consisting of the PE solution pm and
having step index t, the value is associated with the statement vector (one-hot vector of size
= ns) for step t + 1 of pm. Putting together the statement vectors for all execution tuples
that are part of ekeys, we get a tensor pvalues of size L× ns. Embedding each entry in this
tensor using an embedding layer Fγ gives us V = F(pvalues) of size L× Z. This is then fed
as input to the model described above. The output from the model is then linearly projected
to give the logits for the statement predictions ∈ Rns for step t+1 of the global program pg.
In addition to the statement predictions, we can also obtain the operator predictions ∈ Rno ,
starting from the operator vector (one-hot vector of size = no) and following a process similar
to the statements, except that we use a different embedding and final projection layer. The
right of Figure 4.1 shows an example of how a query (top) is combined with keys, values and
relation scores (bottom) for our model.

4.3.3. Training

The two main components of N-PEPS, the PE Searches module and the Cross-
Aggregator, are trained separately. To create samples for training the PE model, we take
one data point (X = {ri}Ni=1 and pg) from the GPS approach and create N data points
out of it. Since we do not have supervision for the PE solutions, for every example ri in
X, we use pg as a proxy for ground-truth PE solution. We believe that using pg as proxy
supervision even though not being entirely correct, forces the PE search component to
avoid overfitting to a single example and hence is more likely to produce PE solutions that
1Note that our formulation of relative attention differs from the formulation used in Shaw et al. (2018);
Hellendoorn et al. (2020), where the relation scores are added either to the query or values.
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generalize to examples outside the ones given as specification (see Appendix D.2 for more
details).

For training the CA module, we generate data points that we call aggregator instances.
Each aggregator instance consists of X, a list Y of tuples of PE solutions pi and corresponding
PE solution scores ui, and global program pg. The pi’s and ui’s are generated via CAB from
a trained PE model (more details on how they are generated in Appendix C.2). Given
X and Y as input, the objective is to learn the parameters of the CA module such that
the output is the line-wise statement and operator predictions corresponding to pg. The
net loss at step t is the sum of two terms: (a) a cross entropy loss between the predicted
statement ŝt (obtained from CA) and the actual statement vector st (obtained from ptg); (b)
a cross entropy loss between the predicted operator ôt and the actual operator vector ot.
Like PCCoder, the operator loss is used as an auxiliary loss to improve training. Note that
for each aggregator instance, since we have X and Y to begin with, we need to compute the
keys and values only once. However, the computation of query has to be done at each step of
the global program execution. While training, since pg is known, we can use teacher forcing
and increase efficiency by batching, where an element in the batch corresponds of one step
of execution of pg.

4.3.4. Inference

The process of inference in PEPS is the same as in PCCoder (see Section 4.2.1), except
that in addition to the contribution from GPS, we add another term that accounts for the
contribution from CA. The contribution from GPS is obtained by using a GPS model that
is trained as in standard PCCoder. The net value of the predicted statement at step t is
then obtained by taking a weighted contribution from the statement predictions from the
trained GPS model ŝt1−α and the statement prediction from the trained CA module ŝtα.
For predicting the drop vector d̂t, we take contributions only from GPS. When α = 0, our
approach becomes equivalent to GPS.

ŝt = α ∗ ŝtα + (1− α) ∗ ŝt1−α (4.4)

d̂t = d̂t1−α

We perform CAB until we find a global solution or we exceed the specified timeout. The
right part of Figure 4.1 illustrates an example of the steps involved in synthesizing step 2 of
pg.
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4.4. Experiments and Results
Following prior work (Balog et al., 2016; Zohar & Wolf, 2018)2, we generate programs

for training and testing, with each program consisting of five IO example pairs, i.e., N =

5. The data generation process ensures that there is no overlap between the training and
test programs, with programs being functionally non-equivalent to programs of shorter or
equivalent lengths (see Appendix 4.C.1 for more details). In the first set of experiments
(henceforth referred to as E1), we generated 105036 training programs of length up to 4
(i.e., consisting of lengths 1, 2, 3, 4). For the second set of experiments (henceforth referred
to as E2), we generated 189328 training programs of length up to 12. 10% of the training
data was used for validation. To ensure robustness and reproducibility of results, for each
method, we carry out experiments over 30 different test splits, where each split contains
500 programs of a specific length. For E1, we generate test programs of length 4, and for
E2 we generate programs of lengths 5, 8, 10, 12 and 14. We learn separate GPS models
and PE models for E1 and E2. All GPS results were obtained using the original PCCoder
implementation1. A notable difference in our experiments from PCCoder (Zohar & Wolf,
2018) is that we consider a short timeout of 5s (in both E1 and E2, for all methods), instead
of 5000s and 10000s. This choice is representative of the timeout required for satisfactory
user experience in program synthesis systems used in real-world interactive use-cases (such
as FlashFill feature in Microsoft Excel (Gulwani, 2011)). Given a particular timeout value,
we record the Success Ratio, which is the fraction of test samples that succeeded in finding
a global solution.

4.4.1. Initial Experiment: Analysis of PE Solutions

The promise of PEPS is rooted in the assumption that it is much easier to find PE
solutions than finding a global solution. In order to test this hypothesis and get an idea
of the types of cues discovered by PEPS, we performed a set of analysis experiments using
data from E1. Using the trained PE model to find PE solutions, we consider two variants.
The first variant called tot(k) is similar to the strategy of finding PE solutions that we
use in PEPS (Section 4.3.1), where we search for PE solutions sequentially (in the order of
examples in X) until the discovered PE solutions taken together satisfy k examples in X

(where k ≤ 5). This helps us understand how much the coverage (= k) from a list of PE
solutions can be. In the second variant called ind(k), we record success by searching for
PE solutions sequentially until we find an individual PE solution that satisfies k out of N
examples in X. Here, the success ratio helps us assess how good a single PE solution is. In
other words, can we rely solely on individual solutions or do we need to aggregate them?

2We used the implementation from PCCoder (Zohar & Wolf, 2018), at https://github.com/amitz25/PCCoder
(MIT License) for data generation and obtaining results for PCCoder.
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For the initial experiment, since no aggregation is done, we divide the timeout of 5s evenly
amongst PE searches, i.e., each PE search gets 1

5
× 5 = 1s as the timeout value. For GPS,

we use the trained GPS model with a timeout of 5s.

Table 4.1. Success ratio of GPS, ind and tot for different values of k for test programs of
length 4.

GPS ind(1) ind(2) ind(3) ind(4) ind(5) tot(1) tot(2) tot(3) tot(4) tot(5)

77.0 99.2 95.4 85.4 70.4 43.2 99.2 97.6 97.0 94.8 82.4

Table 4.1 gives the results of these analysis experiments on one of test splits for programs
of length 4. Note that in tot, we are not aggregating the cues to find a global program.
Hence, the value given under tot(5) is not directly comparable to GPS. We make a few
observations. First, the success ratio increases with decreasing value of k. Therefore, as
speculated, it is easier to find solutions that satisfy examples partially. Second, we see that
even though the numbers for ind are encouraging, they are less than the corresponding values
(for same k) for tot. This suggests that aggregating PE solutions is better than dealing with
them individually. Third, the success ratio of tot(5) is better than GPS. This suggests there
is potential in thinking of an architecture that can learn to combine these solutions. Even
for cases where we couldn’t find PE solutions that satisfy all 5 examples, we can hope to
make use of the rich partial cues (indicated by high success ratios) coming from tot(k < 5).

4.4.2. Methods

In addition to the standard GPS baseline (PCCoder (Zohar & Wolf, 2018)), we exper-
imented with three ablation baselines that represent simple ways of aggregating the PE
solutions without making use of the program state. Hence, they help us understand the role
of PE cues alone. These baselines are: (i) Sum-PEPS: Replacing the contribution from CA
module in Equation 4.4 by a module that combines the PE solutions by taking the sum of all
PE one-hot statement vectors; (ii) Mean-PEPS: Same as (i) except that sum is replaced
by mean; (iii) Mean-PEPS+U : Same as (ii) except that the one-hot PE statement vectors
are multiplied by their corresponding solution scores before taking the mean. To understand
the benefit of aggregating with our proposed CA architecture on top of the value brought
by the PE cues, we experimented with the following variations: (i) N-PEPS: Our neural
model of PEPS described in Section 4.3.2 with U being a zero tensor; (ii) N-PEPS+U :
Same as (i) but with U included. Complete details of hyperparameters for all methods can
be found in Appendix 4.D.
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Model Success Ratio

PCCoder (Zohar & Wolf, 2018) 77.75 ± 0.38

Sum-PEPS 82.71 ± 0.32
Mean-PEPS 82.68 ± 0.33

Mean-PEPS+U 82.70 ± 0.32
N-PEPS 86.22 ± 0.25

N-PEPS+U 87.07 ± 0.28
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Fig. 4.3. Results for E1: (Top) Success Ratio with standard error. The top row in the
table corresponds to GPS; (Bottom) Success Ratio vs. time taken.

4.4.3. Results

For each test data point, we record either a success or failure (based on whether within
5s, we find a global solution or not) and the actual time taken to find a global solution. As
described in Section 4.3.1, for all PEPS methods, we start by allocating a PEPS timeout
value that is less than 1s (= 1

N
× total timeout). We sum the actual time (≤ PEPS timeout)

taken for finding individual PE solutions. The residual times (if any) left out is added and
used for aggregation and global inference. Note that PEPS timeout and α are treated as
hyperparameters that are chosen using the validation set.

To provide a fair comparison across all methods, each test split is run using a single core
and single CPU thread with a timeout of 5s. To account for variability across machines, we
chose to run a test split on a machine chosen randomly from a collection of 7 machines of
similar configuration3 (Google Cloud instances with 120GB RAM each). We report standard
error across the 30 test runs.

3We additionally verify that different runs on the same machine produce similar results (Appendix 4.D.6)
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Table 4.2. Results for E2: Success Ratio with standard error for all models.

Model Length = 5 Length = 8 Length = 10 Length = 12 Length=14

PCCoder (Zohar & Wolf, 2018) 70.91 ± 0.35 44.17 ± 0.45 28.18 ± 0.33 19.69 ± 0.34 14.71 ± 0.23

Sum-PEPS 76.45 ± 0.33 43.4 ± 0.56 28.96 ± 0.27 20.94 ± 0.32 15.67 ± 0.32
Mean-PEPS 75.79 ± 0.31 44.42 ± 0.51 29.55 ± 0.29 21.45 ± 0.27 16.35 ± 0.27

Mean-PEPS+U 75.99 ± 0.32 44.49 ± 0.52 29.75 ± 0.25 21.74 ± 0.30 16.45 ± 0.33
N-PEPS 79.18 ± 0.31 47.23 ± 0.49 32.3 ± 0.34 23.34 ± 0.28 17.35 ± 0.31

N-PEPS+U 79.19 ± 0.30 46.31 ± 0.61 31.84 ± 0.36 22.71 ± 0.28 16.68 ± 0.21

Main result: The top and bottom left parts of Figure 4.3 show the success ratio and
success ratio vs. time taken (average of the actual time taken) plots, respectively, for test
programs of length 4 when trained on programs up to length 4 (E1). Table 4.2 shows the
success ratio for test programs of lengths 5, 8, 10, 12, and 14 when trained on programs up
to length 12 (E2). In both these settings, we observe that the performance of the ablation
baselines is better than GPS, illustrating the promise in the quality of PE solutions. When
we use our CA module to aggregate these cues instead, we see that the performance improves
even further. We used the default value of ν = 11 used in PCCoder, which means that for
programs of length > 8, certain variables will be dropped from the program state. Also,
note that the results for test length 14 represent a case of length generalization. We show
that in both these scenarios, our proposed method is quite advantageous4. In addition, we
compare the performance of N-PEPS with GPS for the cases of intent generalization, i.e.,
generalization of the synthesized program to examples other than those given as part of X
(Appendix 4.F.2) and when given a longer timeout of 1000s (Appendix 4.F.1). In both these
settings, N-PEPS shows superior performance, highlighting its generality.

Attention visualization: Figure 4.4 shows a visualization of attention scores at t = 2

and t = 3 obtained from our best model under E1 for the example shown in Figure 4.1.
This example represents a case from the test set where N-PEPS succeeds in finding a global
solution, whereas other methods fail. As can be seen, the actual statement of p2g is DROP c
a and our model indeed gives relatively higher attention scores to p21 and p23, both of which
correspond to the same statement. Similarly at t = 3, our model gives more attention to
p33 = MAP (*-1) d = p3g.

4See Appendix 6.G for success cases of N-PEPS & Appendix 4.F.3 and Appendix 4.F.4 for empirical analysis
of synthesized programs.
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Fig. 4.4. Visualization of attention scores for N-PEPS+U

Fig. 4.5. Variation of success ratio with PEPS Timeout (top) and α (below) for N-PEPS

Variation with PEPS timeout and α: There is a non-trivial tradeoff in the division
of the total timeout into the time given to find PE solutions and the time given to the CA
module. A higher PEPS timeout results in better chances of discovering rich PE cues. This
means that there may be less or almost no time needed for aggregation. On the other hand,
if we start with a low PEPS timeout, the cues from PE solutions may not be as good, but we
have more time to perform aggregation. Also, there is a question of how much contribution
should be taken from CA and how much from GPS, which is determined by the value of α.
Figure 4.5 analyzes this tradeoff. On left, we show the variation of success ratio with PEPS
timeout and on right, we have the variation with α, for the validation set under E2. We
see that the performance improves with an increase in PEPS timeout with a slight decrease
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towards the end. Also, we see that generally higher values of α are better indicating that
the contribution from CA is more important than the contribution from GPS.

Table 4.3. Performance of
variants of K for E1

Variant Success Ratio

N-PEPS-PG 85.19 ± 0.26
N-PEPS-PG+U 85.94 ± 0.26

N-PEPS-PP 85.97 ± 0.26
N-PEPS-PP+U 86.21 ± 0.27

N-PEPS 86.22 ± 0.25
N-PEPS+U 87.07 ± 0.28

Variants of K: In addition to obtaining H(ekeys)

in the way described in Section 4.3.2, we tried two other
ways of composing the keys by varying the set S in the
execution tuple against which the PE solutions are ex-
ecuted. In the first variant, PE solution pm from the
list P of M discovered PE solutions is executed against
the global set X, i.e., ekeys = [(pm, {1, 2, ..N}, t)] where
pm ∈ P and t ∈ {0, 1, ..|pm| − 1}. We denote this
variant as N-PEPS-PG (PG = PE-global ET). In the
second variant, pm is executed against the set Sm con-
sisting only of examples indices that pm satisfies, i.e.,
ekeys = [(pm, {j}, t)] where j ∈ Sm. We call this variant
as N-PEPS-PP (PP = PE-PE ET). Table 4.3 shows the test results of these variants for
E1 with and without U . We see that all the variants perform better than GPS and the three
ablation baselines (N-PEPS variant used in Section 4.3.2 was chosen using the validation
set). We see a similar trend for E2 (see Appendix 4.E).

New operator discovery by N-PEPS: We were interested in determining that while
synthesizing the global solution how often does N-PEPS rely on copying statements from
the PE solutions and how often does it generate new operators. We studied this trend for
the cases when α < 1.0, i.e., contributions are taken from both CA and GPS as well as
when α = 1.0, i.e., contributions are taken only from CA (Appendix 4.G.2). This question
is important as it helps us understand the generalization capabilities of CA outside the
statements in the PE solutions. We found that CA alone (with α = 1.0) is capable of
generating new operators. In addition, we found that the new operators are present as part
of the nearest neighbors of the PE statements, thereby pointing to an increased likelihood of
these being ranked higher in the beam search and hence being present in the global solution
(see Appendix 4.G.3 and 4.G.4 for details).

4.5. Related Work
There have been numerous efforts on using deep learning for program synthesis (Ba-

log et al., 2016; Bunel et al., 2018; Devlin et al., 2017b; Kalyan et al., 2018; Devlin et al.,
2017a; Lee et al., 2018; Nye et al., 2019; Odena & Sutton, 2020; Parisotto et al., 2016).
However, there is less work that uses the execution of partial programs to assist in synthe-
sis. PCCoder (Zohar & Wolf, 2018) is one such work, which we describe in Section 4.2.1.
BUSTLE (Odena et al., 2021) reweighs the sub-expressions in bottom-up program synthesis
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using the intermediate values obtained by execution of sub-expressions along with property
signatures. REPL (Ellis et al., 2019a) executes partial programs using learned policy and
value networks. Chen et al. (2018) uses a neural encoder-decoder architecture to generate
program tokens conditioned on intermediate states obtained from execution of partial pro-
grams. They work with the Karel DSL (Pattis, 1994; Bunel et al., 2018) that contains loops
and conditionals, an attribute missing from the DSL which we work with. Therefore, extend-
ing N-PEPS for Karel is an interesting future work. Note that all the approaches mentioned
above are examples of purely GPS approaches.

Few works use solutions that satisfy examples partially, to aid in program synthesis. Ini-
tial motivation for our work comes from FrAngel (Shi et al., 2019), which is a component-wise
synthesis system that relies on mining fragments of Java code that satisfy examples partially,
given target program function signatures and a list of Java libraries. The mining of frag-
ments as well as combination is done using a set of heuristics and predefined rules with no
deep learning involved. Assuming that the user provides IO examples in order of increasing
difficulty, Perelman et al. (2014) iteratively refines a program, with the current program sat-
isfying the sequence of IO examples encountered till now. STUN (Alur et al., 2015) extends
the CEGIS (Solar-Lezama et al., 2006) approach by providing domain-specific explicit unifi-
cation operators for combining partial solutions while Alur et al. (2017) uses decision trees for
the same. Recently, BESTER (Peleg & Polikarpova, 2020) and later PROBE (Barke et al.,
2020) perform bottom-up enumeration of programs in a loop by enumerating all programs
that satisfy IO examples partially. This is followed by heuristics-based selection of promising
programs. However, as opposed to N-PEPS that automatically learns to aggregate partial
solutions producing the global program in one shot, PROBE relies on using these programs
to iteratively update the weights of useful productions in their probabilistic grammar using
a fixed update rule. This update can be viewed similar to our ablation baselines that do not
use the neural network based learned aggregation. The guided-search component of PROBE
provides an interesting alternative to finding PE solutions. One way of incorporating this
in our top-down setting might be to start with the CAB search as in GPS and then select
promising solutions based on evaluating examples on prefixes of programs obtained during
the beam search. It may be useful to then aggregate the selected solutions using a neural
architecture similar to ours.

4.6. Conclusions and Future Directions
In this work, we propose N-PEPS, where the idea is to break the problem of finding a

program that solves all examples into two stages: (a) finding programs that solve a single
example (PE solutions) (b) aggregating the PE solutions such that it leads to a program that
solves all examples. For aggregation, we propose a neural-network based multi-head attention
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architecture (CA module) that utilizes the state of program execution to learn to combine
the PE cues. We note that program synthesis systems in general should be deployed with
caution for use in real-world applications. Blind trust on these systems can create chances
for potential negative impact, as there might be cases where the generated program contains
bugs, especially for unseen examples outside the specification. In the future, we want to work
with programs that contain loops and conditionals (Pattis, 1994; Chen et al., 2018; Bunel
et al., 2018). Another interesting research direction would be to explore the interaction of N-
PEPS with out-of-distribution generalization settings like compositional generalization (Lake
& Baroni, 2018).
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Appendix for the first article

4.A. Details of PCCoder (Zohar & Wolf, 2018)
We provide our version of the training and inference algorithms and description of mod-

ules used in PCCoder (Zohar & Wolf, 2018) next. Note that the terminology used in PCCoder
differs from what we have used here.



4.A.1. Training and Inference Algorithms of PCCoder

Algorithm 1 Train (GPS)
Require: pg = [ptg]

T
t=1 = ground-truth program with

T lines
Require: ν = max # allowed variables = memory-

size
Require: X = {(xi, yi)}Ni=1 = {ri}Ni=1 = set of N IO

examples

1: X 0 = [ri]
n
i=1 ▷ Initial State

2: for t in range(T )) do
3: ▷ Obtain ground truth
4: st, ot, dt = R(ptg, [p

j
g]j≥t,Ht−1)

5: Ht−1 = Hθ(X t−1) ▷ Obtain current state
embedding

6: ŝt, ôt, d̂t = Wϕ(Ht−1) ▷ Obtain predictions
7: ▷ Calculate loss and update parameters
8: L = CE (st, ŝt ) + CE (ot, ôt) + Σν

j=1 BCE
(dt

j

, d̂t
j

)
9: θ ← θ − α ∗ ∇θL
10: ϕ← ϕ− α ∗ ∇ϕL
11: ▷ Randomly chose an index to drop
12: d′

t

= random_choice(dt)
13: ▷ Execute ptg to get updated state
14: X t = DropExec(ptg,X t−1, d′

t

, ν)

15: procedure DropExec(p, x, d′, ν)
16: l = get_num_vars(x)
17: N = shape(x)[0] ▷ # IO examples
18: for i in range(N) do
19: xi = x[i]
20: ▷ Execute p against xi to obtain result ci
21: ci = Execute(p, xi)
22: if l > ν then ▷ Need to drop a variable
23: xi[d

′] = ci
24: else
25: xi.append(ci)

26: l = l + 1
27: set_num_vars(x, l)
28: return x ▷ return the updated state

Algorithm 2 Inference (GPS)
1: X 0 = [ri]

n
i=1

2: while time < timeout do ▷ CAB outer loop
3: ▷ Initial Beam: (state, program, prob)
4: B = [(X 0, [ ], 1.0)]
5: ▷ pg = global solution
6: pg = BeamSearch(B) ▷ CAB inner loop
7: if pg == FAILED then
8: beam_size*=2; beam_expansion_size+=10
9: procedure BeamSearch(B)
10: while beam search conditions are met do
11: B′ = [ ] ▷ new beams
12: ▷ For each parent node
13: for (b, (X t−1

b , pt−1
b , st−1

b )) in enum(B) do
14: if is_solution(X t−1

b ) then
15: return pt−1

b

16: Ht−1
b = Hθ(X t−1

b )

17: ŝtb, d̂
t
b = Wϕ(Ht−1

b )
18: ▷ sort ŝtb by decreasing probability
19: ŝtb = sort(ŝtb)

20: ▷ choose argmax of d̂tb to drop
21: d′

t

b = argmax(d̂tb)
22: ▷ Expand the parent node
23: for s̃tb in ŝtb[: expansion_size] do
24: ▷ get statement id for the prob entry
25: ptb = prob_to_stat(s̃tb)
26: ▷ get updated memory
27: X t

b = DropExec(ptb,X t−1
b , d′

t

b , ν)

28: pt−1
b .append(ptb) ▷ updated program

29: st−1
b = st−1

b ∗ s̃tb ▷ updated
probability

30: B′.append((X t
b , p

t−1
b , st−1

b ))
31: ▷ sort beams by decreasing probability
32: B′ = sort (B′) [:beam_size]
33: B = B′

34: return FAILED ▷ if no solution found
during beam search, return Failed solution

4.A.2. Description of Modules in PCCoder

The inputs to a program can either be an integer or an array of integers of maximum
length 20. The integers can be in the range [-256, 255]. There can be a maximum of three
input arguments to a program. There are 1298 statements and 38 operators in the DSL, i.e.,
ns = 1298 and no = 38. Execution of a line in the program returns exactly one variable.
Below, we describe the blocks present at different stages of PCCoder:

• State Representation: For each of the N IO examples, the corresponding inputs
are taken and all entries are made positive by subtracting the minimum integer value
under the DSL (i.e. -256) from them. For shorter inputs, NULL values up to length
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q = 20 are padded. Then two bits indicating the type of input (list or int) are
appended at the beginning of this representation. Therefore, each variable is now
represented as a vector of size q + 2 = 22. There can be a maximum of ν input
variables and one output variable (corresponding to the output of the IO example
given). If there are less than ν variables, NULL values are padded to make it uniform.
An account of the actual number of variables (i.e. number of filled slots) present in
the state is also kept, denoted by l. The output of this stage is an array of size
N × (ν + 1)× (q + 2). This forms the state X .
• State Embedding (Hθ): The output obtained in the previous step is then passed

through a series of neural network blocks to obtain a state embedding H. An embed-
ding layer projects each entry in the state (excluding the type bits) into an vector
of size e = 20, giving us a tensor of size N × (ν + 1) × (q ∗ e + 2). This is then
passed through a linear layer of size 56 and then reshaped to obtain a tensor of size
N × (ν + 1) ∗ 56. It is then passed through a dense block to obtain a tensor of size
N × Z where Z = 256. This pre-pooling version is what we refer to as the represen-
tation of slots in Section 3.2. An average pooling of these representations across all
N examples gives a vector of size 1× 256 that forms the state embedding.
• Predicting quantities of interest in next line (Wϕ): The state embedding

obtained above is projected into three linear heads of size 1298, 38 and ν followed
by softmax, softmax and sigmoid, respectively which gets us the statement, operator
and drop probabilities.
• DropExec: In the DropExec module, after a statement is executed against the

variables present in the slots in the state X 0, we get new values of resulting variables.
If the actual number of variables l exceeds ν, one of the existing variables is dropped
based on the drop vector. If not, this new variable is simply appended to the existing
variables by filling the next slot in the memory. This updated state is then passed
through Hθ to get the updated state embedding H1. This completes one step of
execution of the program.

For the next steps, we repeat the last two steps mentioned above till we reach the end of
the program. See Figure 2 for an illustration of the process at t = 2.

4.B. Sample Cases
Below we provide two sample cases where GPS fails and our N-PEPS model (for E2)

succeeds in finding a global solution. Foe each sample case, we show the synthesized global
solution on the left, the set of IO examples in the center and the discovered PE solutions
along with PE solution scores in the right. We also report the actual time taken to find the
solutions. Note that for the second case, even though the global ground-truth test program
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is of length 8, N-PEPS discovers a global solution of shorter length.

Global Solution:
(Time taken to find=3.21s)
a ← LIST

b ← ZipWith (+) a a

c ← Tail b

d ← Take c b

e ← Count (>0) d

f ← Take e d

g ← Count (>0) f

h ← Take g f

i ← Take g h

j ← Head i

k ← Take j i

l ← Take j k

m ← Take j k

n ← Take j k

o ← Reverse n

IO examples:
#1. Input :
[4, 5, 6, 2, 6, 2, 1, 6, 1, 4, 2,

5, 6, 3, 2, 2]

Output :
[4, 12, 10, 8]

#2. Input :
[3, 2, 5, 0, 3, 2, 3, 0, 4, 1, 0,

2, 3, 0, 3, 4]

Output :
[6, 0, 10, 4, 6]

#3. Input :
[1, 1, 4, 0, 0, 0, 0, 5, 0, 5, 3,

5]

Output :
[2, 2]

#4. Input :
[4, 4, 1, 4, 4, 1, 4, 2, 2, 1, 3,

4]

Output :
[4, 8, 2, 8, 8, 2, 8, 8]

#5. Input :
[4, 1, 1„ 3, 3, 1, 4, 0, 4, 2, 4]

Output :
[8, 2, 6, 6, 2, 2, 8]

PE Solutions:
p1 : Time taken to find=0.2s
Satisfies #1, #4 (u1 = 0.2)
a ← LIST

b ← ZipWith (+) a a

c ← Tail b

d ← Take c b

e ← Reverse d

p2 : Time taken to find=0.34s
Satisfies #2, #3, #4, #5 (u2 = 0.8)
a ← LIST

b ← ZipWith (+) a a

c ← Head b

d ← Take c b

e ← Count (>0) d

f ← Take e d

g ← Reverse f
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Global Solution:
(Time taken to find=2.98s)
a ← LIST

b ← INT

c ← Maximum a

d ← Take c a

e ← Tail c

f ← Take b c

g ← ZipWith (+) f f

h ← Map (+1) g

i ← Take e h

IO examples:
#1. Input :
[1, 0, 3, 3, 3], 35

Output :
[3, 1, 7]

#2. Input :
[6, 3, 3, 1, 2, 2, 0, 3, 8, 7], 50

Output :
[13, 7, 7]

#3. Input :
[1, 5, 6, 10, 5, 11, 7, 0, 7, 11,

10, 9, 4], 78

Output :
[3, 11, 13, 21, 11, 23, 15, 1, 15,

23]

#4. Input :
[12, 4, 11, 11, 4, 7, 12, 11, 11,

10, 5, 8, 9, 8], 166

Output :
[25, 9, 23, 23, 9, 15, 25, 23]

#5. Input :
[4, 0, 5, 5, 1, 1, 1, 1], 126

Output :
[9]

PE Solutions:
p1 : Time taken to find=0.17s
Satisfies #1, #4, #5 (u1 = 0.6)
a ← LIST

b ← INT

c ← Tail a

d ← Take c a

e ← ZipWith (+) d d

f ← Map (+1) e

p2 : Time taken to find=0.37s
Satisfies #1, #5 (u2 = 0.4)
a ← LIST

b ← INT

c ← Take b a

d ← Tail c

e ← Access d c

f ← Take e c

g ← ZipWith (+) f f

h ← Map (+1) g

p3 : Time taken to find=0.8s
Satisfies None (u3 = 0.0)
FAILED

p4 : Time taken to find=0.17s
Satisfies #1, #4, #5 (u4 = 0.6)
a ← LIST

b ← INT

c ← Tail a

d ← Take c a

e ← ZipWith (+) d d

f ← Map (+1) e

p5 : Time taken to find=0.17s
Satisfies #1, #4, #5 (u5 = 0.6)
a ← LIST

b ← INT

c ← Tail a

d ← Take c a

e ← ZipWith (+) d d

f ← Map (+1) e
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4.C. Data Generation

4.C.1. Generation of Training and Test set

Similar to the data generation process described in Balog et al. (2016); Zohar & Wolf
(2018) and using the implementation from PCCoder 5, we generated programs for training
and testing where each program consists of five input-output examples. The process starts
by generating training programs iteratively starting from length 1 till the maximum length
specified (4 and 12 in our case). For each length, first a program of that length is generated
followed by generating corresponding IO examples which correspond to that program. This
is followed by checking for functional non-equivalence of that program with all generated
programs so far (i.e., programs of length less than or equal to the current length). Functional
non-equivalence means that given a set of IO examples, we can’t have a program of length
x that satisfies the set of examples when we already have a program of length less than or
equal to x in our dataset that satisfies the same set of examples. If the program is found
functionally equivalent to any other programs, it is discarded, else it is added to the training
set.

Once the generation of training set is complete, we proceed to generating the test set.
Given a test length, we generate a program of that length followed by generating the corre-
sponding IO example pair. In addition to checking for functional non-equivalence with all
programs in the test set so far, we also test for functional non-equivalence with every pro-
gram in the training set. This makes sure that there there is no overlap between the training
and test sets and all the programs are functionally non-equivalent to each other. We have
two experimental settings: (a) E1: Training set = 105036 programs till length 4 and 30 test
sets of 500 programs each of length = 4; (b) E2: Training set = 189328 programs of length
up to 12 and 30 test sets of 500 programs each of lengths = 5, 8, 10, 12 and 14. In each
setting, 10% of the training data was used for validation. Figure 4.6 shows the distribution
of training programs with length in both the settings. There are less programs of longer
lengths as there is high probability that they end up being discarded because a functionally
equivalent program of shorter length was found.

5https://github.com/amitz25/PCCoder (MIT License)
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Fig. 4.6. Distribution of training programs: (Left) For E1; (Right) For E2

4.C.2. Generation of Aggregator Instances

An aggregator instance consists of the set of IO examples X, a list Y of PE solutions pi

along with the corresponding PE solution scores ui, and the corresponding global program
pg. To create aggregator instances, for each data point (given X and pg) in the original
training dataset (generated as described in 4.C.1), we generate PE solutions and PE solution
scores using the PE Searches module. For generating the PE solutions, we need to choose
a value of PEPS timeout. We generated aggregator instances with PE solutions obtained
using the trained PE model, in three ways: (a) one aggregator instance with a fixed PEPS
timeout of 0.5s; (b) two aggregator instances with PEPS timeout randomly chosen from
[0.1s, 0.2s, .. 0.9s]; (c) three aggregator instances each with PEPS timeouts of 0.4s, 0.5s
and 0.6s, respectively. These options will lead to the same, twice and thrice the number
of data points present in the original training set. We chose to omit a sample from being
part of training data formed from aggregator instances if either (a) An aggregator instance
consists of a PE solution that satisfies all examples (i.e., ui = 1.0) or (b) When we fail to
get any PE solution (i.e., all ui = 0.0). We can then generate data which omits both (a)
and (b). The datasets formed after removing these aggregator instances will be referred to
as D0.5, Drand and D0.5±0.1 for cases (a), (b) and (c), respectively. In addition, within each
aggregator instance, we can chose to discover all 5 PE solutions (all) or alternatively find a
list of M PE solutions where M ≤ 5 such that taken together these satisfy all examples in
X (tot). Therefore, in total we have 12 different variations (3 PEPS timeouts × 2 inclusion
conditions × 2 modes of discovering PE solutions) of training datasets which can be used
for training the cross-aggregator. We follow a similar procedure to generate variations of
corresponding validation datasets which are used to select the hyperparameters and early-
stopping for training with each dataset variation. Table 4.4 gives the training and validation
data statistics (note that the 2 modes for discovering PE solutions will affect the content of
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Table 4.4. Aggregator data statistics for E1 and E2

Dataset # of samples

E1 E2

Dtrain
0.5 16408 82102
Dval

0.5 2132 9492
Dtrain

rand 41707 176235
Dval

rand 5365 20035
Dtrain

0.5±0.1 49116 248972
Dval

0.5±0.1 6396 28734

a single aggregator instance, but the number of aggregator instances will remain the same
in both cases).

4.D. Experimental details
All our implementations are based on PyTorch (Paszke et al., 2019) version 1.4.0. The

training for the GPS and PE models and the CA was done using Tesla V100 (16GB) and
Tesla P100 (16GB) GPUs on Google Cloud instances with 120GB RAM.

4.D.1. Parallel Execution for PEPS

In the current formulation, we find PE solutions sequentially. However, the running
time can be reduced further by finding PE solution in parallel as the process of finding PE
solution i is dependent only on the IO example ri. So, instead of finding PE solutions one
by one, we can find PE solutions for all examples in parallel and then check whether the PE
solution pi satisfy any other example from X apart from ri. The total time for PEPS can
then be thought of max(time taken to find a PE solution that satisfies ri) + time taken to
aggregate. However, one could argue that PCCoder can also employ more threads in parallel
to speed up their search. Therefore, for a fair comparison with PCCoder, we decided to find
PE solutions sequentially where we evaluate both N-PEPS and PCCoder on a single CPU
thread (with no parallel computations). However, when being deployed for an application
where comparisons with other methods are not required, N-PEPS can significantly boost the
speed up by searching for PE solutions in parallel in a way suggested above.

4.D.2. Training the GPS and PE models

For each experimental setting, we used the training set (generated as described in 4.C.1)
as it is for training the GPS model. For training the PE model, we created five entries out
of a single training data point such that a modified entry has a single IO example and the
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corresponding program is the same across all five entries = program in the data point for
GPS. Since we don’t have supervision available for PE solutions, we chose pg to serve as a
proxy for ground-truth of these PE solutions. Another way of creating this supervision would
have been to perform separate PE searches for each example and recording the discovered
PE solution as ground-truth. However, this procedure would have required the selection of a
specific PE timeout. We didn’t have any good idea of how to select this value as it would have
influenced the generated PE solutions, hence the supervision itself. Also, we didn’t know
what would have been the best supervision to use for cases where the PE search fails to find
a solution. We believe that using pg as proxy supervision even though not being entirely
correct, forces the PE search component to avoid overfitting to a single example and hence
is more likely to produce PE solutions that exhibit intent generalization (generalization to
examples outside the ones given as specification).

The number of training points for PE model = 5 * number of training data points for
GPS. The corresponding validation split was used to select hyperparameters. The selected
hyperparameter values were:

• GPS model: learning rate = 0.001; batch size = 32 for E1 and 100 for E2.
• PE model: learning rate = 0.001; batch size = 100 for E1 and 256 for E2.

For both settings ν = 11. This means that the state has slot for storing 7 intermediate
variables, 3 slots for input variables (there can be a maximum of 3 input arguments to a
program) and an additional slot for storing the output. This means that for E2, dropping
will happen for programs of length greater than 8. We used Adam (Kingma & Ba, 2015a)
optimizer with a learning rate scheduler that decayed the learning rate by 0.1 every 4 epochs.
We used the validation set for early-stopping. Let’s call the learned PE modules as Hθpe and
Wϕpe whereas, the corresponding GPS modules to be Hθg and Wϕg .

4.D.3. Training the Cross Aggregator

For both E1 and E2, we train our cross aggregator (CA) module using the variants of
keys mentioned in Section 3.2 and Section 4.3. For N-PEPS-PG, we use Hθg to obtain state
embeddings that forms the keys, whereas for N-PEPS and N-PEPS-PP we used Hθpe . For
faster convergence, we initialize the statement and operator heads with the corresponding
statement and operator linear heads from Wϕg . We tried finetuning the parameters of H, but
it didn’t result in significant difference in training performance. Hence, we decided to leave
the parameters of the H module unaltered during training. As mentioned in 4.C.2, we tried
both all and tot ways of discovering PE solutions while training. In equations 1, 2 and 3 in
Section 3.2, the projection matrices WQ

i ∈ Rdmodel×dq , WK
i ∈ Rdmodel×dk , W V

i ∈ Rdmodel×dv ,
WO ∈ Rτdv×dmodel . For the multihead relative attention, we used dk = dq = dv = 64, τ = 8

and dmodel = 256. A dropout value of 0.1 was used while training.
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4.D.4. Details of Training Hyperparameters

We tried different values of learning rates, optimizers, learning rate schedulers, datasets
and the PE discovery options. We tried three types of learning rate schedulers6: (a) cosine:
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=0);
(b) cosinewarm: torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer,
T_0=10) ; (c) reduceonplateau: torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
’min’) where optimizer = Adam, SGD. Below we provide the hyperparameter configuration
for the best models chosen using the validation set.

Table 4.5. Hyperparameter values for training the CA. lr= learning rate, lrs = learning
rate scheduler, o=optimizer

Model Hyperparameters

E1 E2

N-PEPS-PP D0.5, all, lr=1e-4, o =Adam, lrs=cosine D0.5±0.1, tot, lr=1e-4, o=Adam, lrs=reduceonplateau
N-PEPS-PP+U Drand, all, lr=1e-4, o=SGD, lrs=cosinewarm Drand, all, lr=1e-4, o=SGD, lrs=cosinewarm

N-PEPS-PG Drand, tot, lr=1e-4, o=SGD, lrs=cosine D0.5, all, lr=1e-4, o=SGD, lrs=cosine
N-PEPS-PG+U Drand, all, lr=1e-4, o=SGD, lrs=cosinewarm D0.5, all, lr=1e-4, o=Adam, lrs=reduceonplateau

N-PEPS Drand, all, lr=1e-4, o=SGD, lrs=cosine Drand, all, lr=3e-4, o=Adam, lrs=cosine
N-PEPS+U D0.5, tot, lr=3e-4, o=Adam, lrs=cosinewarm Drand, all, lr=1e-4, o=Adam, lrs=reduceonplateau

4.D.5. Details of Inference Hyperparameters

For inference we use CAB (Zhang, 1998) which consists of performing beam search itera-
tively, with pruning conditions of beam search (i.e., beam size, expansion size, etc.) weakened
with each iteration, until a solution is found. Simialr to PCCoder (Zohar & Wolf, 2018),
we start with beam size = 100, expansion size = 10 and maximum depth of beam search =
number of steps = maximum program length. If the beam search fails, we double the beam
size and increase the expansion size by 10, and perform beam search again with the modified
parameters. The beam search terminates if we exceed the timeout. If no solution is found
at the end of CAB, we mark that solution as FAILED.

We created a smaller validation split called smallval which consists of 5% of the samples
chosen randomly from the larger validation data. The size of smallval is 525 samples and
946 samples for E1 and E2, respectively. We used this set to find optimal values of PEPS
timeout and α for each model. Table 4.6 provides the selected hyperparameter values for all
the models in both the settings. Timeout of 5s is divided between PE Searches module and
the aggregation + GPS module. The time allocated to latter is denoted by GT in the table.

6see https://pytorch.org/docs/stable/optim.html for more details
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For GPS, since no PE solutions are discovered, the whole timeout is allocated to the GPS
inference block and no aggregation happens, i.e., α = 0.0.

Table 4.6. Hyperparameter values for Inference. PT = PEPS timeout, GT = 5 - ( 5 * PT
).

Model Hyperparameters

E1 E2

GPS GT=5.0s, PT=0.0s, α=0.0 GT=5.0s, PT=0s, α=0.0
Sum GT=2.5s, PT=0.5s, α=0.8 GT=0.5s, PT=0.9s, α=0.2
Mean GT=2.5s, PT=0.5s, α=0.8 GT=0.5s, PT=0.9s, α=0.2

Mean+U GT=2.5s, PT=0.5s, α=0.9 GT=0.5s, PT=0.9s, α=0.4
N-PEPS-PP GT=1.0s, PT=0.8s, α=0.8 GT=1.5s, PT=0.7s, α=0.8

N-PEPS-PP+U GT=1.0s, PT=0.8s, α=0.7 GT=2.5s, PT=0.5s, α=1.0
N-PEPS-PG GT=1.0s, PT=0.8s, α=0.8 GT=2.0s, PT=0.6s, α=0.9

N-PEPS-PG+U GT=1.0s, PT=0.8s, α=0.8 GT=1.0s, PT=0.8s, α=1.0
N-PEPS GT=0.5s, PT=0.9s, α=0.8 GT=1.0s, PT=0.8s, α=0.8

N-PEPS+U GT=1.0s, PT=0.8s, α=0.8 GT=2.0s, PT=0.6s, α=0.9

4.D.6. Variation across different runs and machines

To ensure robustness and reproducibility of our results, we performed experiments with
variations along three dimensions: different runs on the same machine, different machines
and different test splits. Table 4.7 presents the results of variation in success ratio for E1
when run across different test splits, machines and runs across a single machine. Each run
consists of a single CPU thread and single core setting on a machine (Google Cloud instance
with 120GB RAM). We can see that there is very little variation for runs across the same
machine. Hence, for our main experiments we chose to report standard error across different
test splits with single runs on machines that are chosen randomly from a pool of 7 Google
Cloud instances with same configuration.

Table 4.7. Variation in success ratio for runs across the same machine (run1, run2, run3),
different machines (M1, M2, M3) and different test splits (split-1, split-2) for E1

split-1 split-2
M1 M2 M3 M1 M2 M3

run-1 run-2 run-3 run-1 run-2 run-3 run-1 run-2 run-3 run-1 run-2 run-3 run-1 run-2 run-3 run-1 run-2 run-3

GPS 77.4 77.4 78 77 77.8 77.2 77.2 77.2 77.6 78.4 78.2 78.6 78 78 78 78.2 78 78
Sum 82.8 83.2 82.8 82.6 82.8 82.8 83.2 82.8 82.8 84.6 84.6 84.8 84.4 84.4 84.4 84.6 84.6 84.6
Mean 82.8 82.6 82.6 82.4 82.6 82.4 82.6 82.6 82.6 85 85 85 84.8 84.8 85 85 85 84.8

Mean+U 82.8 82.8 82.8 82.8 82.6 82.4 82.6 82.8 82.8 85 85 85 84.8 85 84.8 85 85 85
N-PEPS-PP 86.8 86.8 86.6 86.6 86.6 86.6 86.6 86.6 86.8 89.4 89.4 89.4 89.2 89.2 89.2 89.4 89.2 89.4

N-PEPS-PP+U 86.4 86.6 86.6 86.4 86.4 86.4 86.6 86.6 86.6 88.6 88.6 88.6 88.4 88.4 88.4 88.6 88.6 88.6
N-PEPS-PG 86.4 86.4 86.4 86.4 86.4 86.4 86.4 86.4 86.4 87.6 87.6 87.6 87.4 87.4 87.4 87.6 87.6 87.6

N-PEPS-PG+U 87.8 88 88 87.8 87.8 87.8 88 88 87.8 89 89 89 88.8 89 88.8 89 89 88.8
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4.E. Results for Variants of Key for E2
Table 4.8 presents the test results of ablation studies with different variants of keys for

E2. Similar to E1, we see that all the variants perform better than the corresponding values
for GPS and the three ablation baselines (see Figure 4 in Section 4.3). We also see that the
variant mentioned in Section 3.2 (denoted by N-PEPS in the table) performs the best. Note
that even though, these results are on test data, we had chosen the best variant based on
the results on the validation data.

Table 4.8. Success Ratio with standard error for key variants for E2

Variant Length = 5 Length = 8 Length = 10 Length = 12 Length=14

N-PEPS-PG 78.49 ± 0.35 45.92 ± 0.53 31.36 ± 0.33 22.83 ± 0.33 17.15 ± 0.31
N-PEPS-PG+U 78.16 ± 0.30 46.37 ± 0.57 31.88 ± 0.35 23.17 ± 0.33 17.62 ± 0.30

N-PEPS-PP 78.74 ± 0.32 45.9 ± 0.57 31.16 ± 0.33 22.67 ± 0.32 16.91 ± 0.28
N-PEPS-PP+U 78.87 ± 0.35 44.87 ± 0.50 30.69 ± 0.41 22.43 ± 0.36 16.59 ± 0.32

N-PEPS 79.18 ± 0.31 47.23 ± 0.49 32.3 ± 0.34 23.34 ± 0.28 17.35 ± 0.31
N-PEPS+U 79.19 ± 0.30 46.31 ± 0.61 31.84 ± 0.36 22.71 ± 0.28 16.68 ± 0.21

4.F. Additional Results

4.F.1. Longer Timeout Results

We wanted to know whether the performance gains of N-PEPS gets translated to scenarios
with a higher computational budget (as opposed to a lower budget of 5s in our setting). We
performed inference with a timeout of 1000s using our previously trained models for GPS
and N-PEPS in the E2 setting. For one test split consisting of 500 examples of length=12,
the success ratios for GPS and N-PEPS were 54.38% and 57.14%, respectively. As expected,
when given a higher budget, the numbers for both methods increase. However, N-PEPS
still outperforms GPS. Note that here we chose the inference hyperparameters based on an
educated guess, i.e., α = 0.8, PEPS timeout = 160s and the time given to the CA module
= 200s. The test performance of N-PEPS is likely to increase further if the values of these
hyperparameters are selected from the validation set. This result provides promising evidence
towards the wide applicability of our framework for longer timeout settings.

4.F.2. Intent Generalization Results

There is an interesting scenario of intent generalization where generalization to examples
outside of those given as specification is required, in assumption that the additional exam-
ples sufficiently define the intent. To see how N-PEPS fares in this setting, we performed
experiments where we generated 5 additional IO examples apart from the 5 already present
as part of our test data and then evaluated whether the discovered global solutions satisfy
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Table 4.9. Success Ratio with standard error for intent generalization experiments

Method Length = 4 (E1) Length = 5 (E2) Length = 8 (E2) Length = 10 (E2) Length = 12 (E2) Length = 14 (E2)

GPS 75.80 ± 0.38 68.31 ± 0.38 33.87 ± 0.35 18.19 ± 0.30 10.99 ± 0.26 7.48 ± 0.17
N-PEPS 84.09 ± 0.27 76.16 ± 0.32 36.33 ± 0.43 21.02 ± 0.29 13.17 ± 0.25 9.17 ± 0.23

the newly generated examples. In Table 4.9 we provide the success ratio with standard error
for GPS and N-PEPS across 30 test splits. As can be seen from the results that even though
the numbers have reduced from those provided in the tables provided in Figures 3 and 4 of
our paper (as expected because the examples are outside of the specification), N-PEPS still
outperforms GPS in both E1 and E2 across all lengths.

4.F.3. Function wise performance

We wanted to see which instructions in the DSL are "difficult" and compare the difficulty
across GPS and N-PEPS. To do this, we record the count of instructions in the cases where
the model was not able to find any solution divided by the total count of the instructions.
Note that we look only at the operator and not the full statement, i.e., we ignore the ar-
guments. Figure 4.7 shows this plot for GPS and N-PEPS+U for E1 with numbers across
all 30 test splits. We see that usually higher-order functions like COUNT, ZIPWITH are "diffi-
cult" and functions like MAXIMUM, MINIMUM are comparatively "easy". Also, when compared
with GPS, PEPS improves the failure rate across all instructions with improvements ranging
from 32.67% for SUM to 52.72% for FILTER. Other notable improvements being 49.10% for
MAXIMUM, 44.69% for MAP, 45.67% for SCAN1L and 47.14% for TAIL.

4.F.4. Perfect PE solutions

One of the advantages of PEPS is that we may get a single PE solution which satisfies
all IO examples (we call this perfect PE solution). In these cases, we do not even need to
go to the CA and depending on when this perfect PE solution is discovered, it can lead to
significant time savings (e.g., if the first PE solution discovered turns out to be a perfect
solution, then the time taken to find the solution is equal to just the PEPS timeout which is
upper bounded by 1/5th of the total timeout). Figure 4.8 shows the fraction of perfect PE
solutions with the length of test programs for N-PEPS for E2. We see that as the program
length increases, we have less chances to find a perfect PE solution. This is expected because
it will be difficult for a single PE solution to satisfy all IO examples as the programs become
lengthy (and hence complex). Note that even though we increase the depth of beam search
based on the length of the test program, the overall budget (=5s) and the PEPS timeout
(=0.8s in this case) remains the same across different lengths. This also means that for
higher lengths, N-PEPS needs to rely more on CA to find a global solution.
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Fig. 4.7. Function-wise breakdown of failing cases for GPS and our N-PEPS model on E1
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Fig. 4.8. Fraction of perfect PE solutions with length of test programs for our best model
for E2
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4.G. More insights into the workings of CA
We tried to gain more insights into how our Cross Aggregator mechanism works. First,

we looked into some general patterns learnt by the CA module. Second, we were interested
in finding out how often does CA rely on copying from the PE solutions, how often does
it generate new operators (in isolation with the GPS module) and how does it generate
new operators. The last question is important as it helps us understand the generalization
capabilities of CA outside the statements in the PE solutions. Even though we found it
difficult to figure out a fixed scheme that worked across all the settings and different examples,
by doing nearest-neighbour analysis, we were able to find some useful patterns that might
shed some light towards answering this question.

4.G.1. General Patterns Learnt by CA

To look for general patterns, we inspected the representations of the final linear layer of
our trained CA model (that is responsible for providing the logits used in the global statement
prediction). The size of this weight matrix is ns × Z, where the i-th row can be interpreted
as a learned embedding corresponding to the statement index i. We ran t-SNE on these
embeddings and looked for interesting clusters. We found many cases where functionally
similar statements or statements with similar signatures were clustered together. We give
few examples of these patterns below:

1. REVERSE b almost overlaps with SORT b. This is interesting because both take in the
list b and return another list without performing transformations on the elements in
b.

2. MINIMUM b, MAXIMUM b, HEAD b, and TAIL b are clustered together. This is interest-
ing because all these operators select a single element from b.

3. FILTER (ODD) a is close to FILTER (ODD) b. In this case, there is a difference of
only the argument. For cases, where the prior statements in the program lead to
transformations such that the contents of lists a and b are the same, like b = SORT a
or b = REVERSE a, swapping FILTER (ODD) a with FILTER(ODD) b and vice-versa
will give the same result.

4.G.2. Overlap of PE Solutions with Global Solution

We wanted to see in how many cases do the operators present in the global solution
also occur in one of the discovered PE solutions. This number gives us a rough estimate
of how much can our attention mechanism do with just trying to copy these operators
from one of the PE solutions when synthesizing the global solution. This is a rough estimate
because we measure only the overlap of the operators and not statements, i.e., the arguments
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to the operators in the PE solutions and the global solution can be completely different.
Specifically, we record the number of operators that overlap between the global solution
(taken as the ground-truth program) and one of the PE solutions, divided by the total
number of statements in the ground truth programs across all cases.

The left part of Figure 4.9 shows the variation of this number with different lengths of test
programs for N-PEPS for E2 when α = 0.8 (which is the best-chosen hyperparameter value
for this setting). We see that there is significant overlap between the operators indicating
the quality of our PE solutions. However, the overlap decreases with length, which is also
indicated by a decrease in overall success ratio with length (see left part of Figure 4). This
is expected because we keep the same budget (PEPS timeout = 0.8s in this case) to discover
PE solutions across all lengths. Improvements in the CA architecture focused to improve
performance across longer length of programs in limited time budget, can be one of the
potential directions to address this.
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Fig. 4.9. Variation of fraction of operator overlap with length of test programs
for our best model for E2: (Left) α < 1.0 (CA + GPS); (Right) α = 1.0 (CA alone)

There is significant overlap (about 79% for length 5), but not 100% between the operators,
highlighting that in many cases (21% for length 5), N-PEPS performs discovery of new
operators that are not present in the global solution. To further segregate the role of CA
alone in the discovery of new operators as opposed to CA + GPS, we set α = 1.0 and analyzed
the operator overlap. The right part of Figure 4.9 shows this variation. As expected, the
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overlap percentages increase as compared to the case when α < 1.0. However, we can see
that even when all the contribution to the global solution comes from the CA module alone,
there is not a 100% overlap between the operators and therefore, there are non-zero chances
of discovery of new operators. From these plots, we can conclude that the CA is not merely
a copy mechanism and is useful in scenarios where the discovered PE solutions are not
significantly overlapping with the global solution.

4.G.3. Sample cases where new operators are discovered

Apart from the analysis done above, we wanted to gain further intuition of how the new
operators are being discovered by the CA module. To this effect, we looked at sample cases of
the generation of new operators by just CA (i.e., α = 1.0). In each box below (Figures 4.10-
4.14), for test programs of length = 5, we report a case from the cases when the number of
new operators discovered is 1, 2, 3, 4 and 5, respectively. The reported example shows the
global solution discovered along with the corresponding PE solutions and is randomly chosen
out of the total cases that fall within that category (i.e., not cherry-picked). For clarity, we
bold the new operator in the global solution.

Global Solution:

a ← LIST
b ← Sort a
c ← Scan1l (+) b
d ← Map (+1) c
e ← Reverse d
f ← Scan1l (-) e

PE Solutions:

p1 :
a ← LIST
b ← Scan1l (+) a
c ← Map (+1) b
d ← Sort c
e ← Scan1l (-) d

p2 :
a ← LIST
b ← Scan1l (+) a
c ← Map (+1) b
d ← Scan1l (-) c

p4 :
a ← LIST
b ← Map (+1) a
c ← Scan1l (+) b
d ← Sort c
e ← Map (-1) d

p3 = p5 :
FAILED

Fig. 4.10. New operators discovered = 1, Total cases = 2169
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Global Solution:

a ← LIST
b ← Minimum a
c ← Drop b a
d ← Sort c
e ← Take b d
f ← Maximum e

PE Solutions:

p1 :
a ← LIST
b ← Filter (EVEN) a
c ← Maximum b

p2 :
a ← LIST
b ← Minimum a
c ← Drop b a
d ← Count (>0) c
e ← Access d a

p3 :
a ← LIST
b ← Minimum a
c ← Drop b a
d ← Filter (ODD) c
e ← Maximum d

p4 :
a ← LIST
b ← Minimum a
c ← Drop b a
d ← Filter (EVEN) c
e ← Maximum d

Fig. 4.11. New operators discovered = 2, Total cases = 1155
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Global Solution:

a ← LIST
b ← Reverse a
c ← Count (>0) b
d ← Access c b
e ← Take d b
f ← Filter (ODD) e

PE Solutions:

p1 :
a ← LIST
b ← Minimum a
c ← Reverse a
d ← Filter (ODD) c

p2 = p3 = p4 :
a ← LIST
b ← Filter (ODD) a
c ← Reverse b

p5 :
a ← LIST
b ← Filter (<0) a

Fig. 4.12. New operators discovered = 3, Total cases = 395

Global Solution:

a ← LIST
b ← LIST
c ← Tail b
d ← Count (>0) a
e ← Drop d b
f ← Sort e
g ← Access c f

PE Solutions:

p1 :
a ← LIST
b ← LIST
c ← Map (+1) b
d ← Tail c

p2 :
a ← LIST
b ← LIST
c ← Tail b

Fig. 4.13. New operators discovered = 4, Total cases = 119

Global Solution:

a ← LIST
b ← LIST
c ← Sort b
d ←Map (+1) a
e ← Filter (>0) d
f ← Reverse c
g ← Zipwith (+) f e

PE Solutions:

p1 = p2 = p3 = p4 = p5 :
FAILED

Fig. 4.14. New operators discovered = 5, Total cases = 15
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Looking at the above samples, there appears to be a trend where discovering fewer and
shorter PE solutions leads to more new operators discovered. This may be attributed to the
fact that when there is less information in the PE solutions, there is usually more of a need
to generate new operators. The example in Figure 4.14 is an extreme case of this, where no
PE solutions were found, so all the operators need to be new.

4.G.4. Nearest-neighbour analysis for new operators

To gain intuition about how new operators are being generated by then CA module, we
make two assumptions:

• If a statement occurs frequently among the PE solutions, there is a high likelihood
that it will also be present in the global solution. We find some evidence of this from
our experiments in the paper where we show that the Sum-PEPS baseline performs
better than GPS.
• If two statements s1 and s2 are close to each other in the output embedding space

(with embeddings e1 and e2), they will also be similar in their corresponding logits.
Here, we are assuming that e1 ≈ e2 → x ∗ e1 ≈ x ∗ e2, with x being the input
activation.

With the above assumptions, for each of the examples provided in Appendix 4.G.3, we
calculated the top-10 nearest neighbours of the PE statements (using the representations
obtained in a way described Appendix 4.G.1). After this, we checked if the new operators
in the global solution are present as part of the nearest neighbours of the PE statements.
The presence of new operators points to a high likelihood of these being ranked higher in the
beam search and hence being present in the global solution. In our analysis based on cases
provided in Appendix 4.G.3, we did observe this trend. We provide some instances below:

• In Figure 4.10 above, the statements containing the new operator REVERSE occur
as the topmost neighbour (based on distance) of SORT c , MAP (+1) b , as well as
among top-3 neighbours of SCAN1L (+) a . Note that the variation in certain cases
from the general pattern observed before might be attributed to the two assumptions
mentioned above not completely holding true in all cases.

– Top-3 neighbours of SORT c (occurs in p1, p4 ): [REVERSE c, MAP (+1) c,
COUNT (>0) c]

– Top-3 neighbours of MAP (+1) b (occurs in p1, p2): [REVERSE b, SORT b,
COUNT (>0) b]

– Top-3 neighbours of SCAN1L (+1) a (occurs in p1, p2): [SCAN1L (-) a, SUM
a, REVERSE a]
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• In Figure 4.11 above, new operator SORT is among the top-2 neighbours of COUNT
(>0) c. Similarly, the new operator TAKE is among the top-2 neighbors of DROP b
a.

– Top-3 neighbours of COUNT (>0) c (occurs in p2): [REVERSE c, SORT c,
MAXIMUM c]

– Top-5 neighbours of DROP b a (occurs in p2, p3, p4): [ACCESS b a, DROP b c,
DROP b d, DROP c a, TAKE b a]
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Chapter 5

Prologue to the second article

5.1. Article Details
On-the-Fly Adaptation of Source Code Models. Disha Shrivastava, Hugo

Larochelle, Daniel Tarlow. This article (Shrivastava et al., 2020) was accepted for publi-
cation at the Computer-Assisted Programming Workshop at Neural Information
Processing Systems (NeurIPS) 2020 .

Personal Contribution The project began with discussions between Disha Shrivastava,
Hugo Larochelle and Daniel Tarlow. Hugo Larochelle and Daniel Tarlow helped formulate
the framework that is suited for adapting to local, unseen code context. Inspired by the
concept of identifier locality within source code files, Daniel Tarlow proposed the notion
of utilizing supporting information drawn from sections both preceding and following the
target hole - location in the source code file where the prediction is intended. Our initial
attempts were directed toward a meta-learning based source code model, but the empirical
results were not that strong. Disha Shrivastava was involved in cleaning and preprocessing
the data, writing all of the code, running the experiments, and writing significant parts of
the paper. Hugo Larochelle and Daniel Tarlow advised on the project and were involved
in the discussion of results, suggesting experiments to run, writing parts of the paper, and
offering constructive critique during the drafting and revision phases of the paper.

5.2. Context
There are many factors that underscore the necessity for source code models to adapt

to patterns during test time that were not encountered during training. These include new
identifiers, coding styles, and naming conventions unique to specific organizations, projects,
or developers. Therefore, the ability to adapt to unseen, local contexts is an important
challenge that successful models of source code must overcome. One of the most popular



approaches for the adaptation of such models is dynamic evaluation. With dynamic evalua-
tion, when running a model on an unseen file, the model is updated immediately after having
observed each token in that file. In this work, we propose instead to approach this problem
in two steps: (a) We select targeted information (support tokens) from the given context; (b)
We use these support tokens to learn adapted parameters which are then used to predict the
target hole. In terms of the broader theme of the thesis (see Section 1.1), the support tokens
along with corresponding preceding tokens or support windows form the support context
Z that are used to inform the prediction of the target hole Y . The adaptation framework
that we propose for step (b) above constitutes the Predict module. The subsequent chapter
(Chapter 6) discusses this work in detail.

5.3. Contributions
The paper proposed a novel framework called Targeted Support Set Adaptation (TSSA)

that formulates the problem of adaptation to local, unseen context in source code by re-
trieving targeted information (support tokens) from both before and after the hole in a file.
Our work demonstrated improved performance in experiments on a large scale Java GitHub
corpus, compared to other adaptation baselines including dynamic evaluation, even with
half the number of adaptation steps. Moreover, our analysis showed that, compared to a
non-adaptive baseline, our approach improved performance on identifiers and literals by 44%
and 19%, respectively.

5.4. Research Impact
This was one of the first works that considered the scenario of editing an existing file in an

IDE where there can be code present both before and after the location where the edit is being
made. Our evaluation setting that we called line-level maintenance imagines a cursor placed
before a random token in a given file. We blank out the remainder of the line following the
cursor to simulate a developer making an in-progress edit to the file and the task is to predict
the blanked-out line. For our framework, we consider support tokens from code both before
and after the line. This was different from the more popular language modelling setting at
that time where code context present after the line was ignored. We utilized this finding in
our later work (Chapter 8) where we use post-lines as an important context to include in
the prompt. Recently, the importance of post context or suffix has become apparent with
leading code models such as code-davinci-002 from OpenAI, InCoder (Fried et al., 2022),
StarCoder (Li et al., 2023) and CodeGen-2 (Nijkamp et al., 2023a) trained with fill-in-the-
middle (Bavarian et al., 2022) objective that utilizes the context that comes after the target
completion in the file.
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Chapter 6

On-the-Fly Adaptation of Source Code Models

6.1. Introduction
The availability of large corpora of open-source software code like GitHub and the de-

velopment of scalable machine learning techniques have created opportunities for the use
of deep learning to develop models of source code (Allamanis et al., 2018a). Statistical
language models for source code (Hindle et al., 2012), like natural language, are usually
designed to take as input a window of tokens w and produce a predictive distribution for
what the next token t might be. However, factors such as proliferation of vocabulary due
to identifiers (such as names of classes, methods and variables) (Karampatsis & Sutton,
2019), the occurrence of repetitive patterns in local context (Tu et al., 2014) and faster rate
of evolution of software corpora (Hellendoorn & Devanbu, 2017a), make modelling source
code different from modelling natural language. According to Allamanis & Sutton (2013), in
the Java GitHub corpus test set, for each project, on average 56.49 original identifiers (not
seen in the training set) are introduced every thousand lines of code. There are also coding
styles and conventions that are specific to each file and may not necessarily be seen in the
training data. Each organization or project may impose its own unique conventions related
to code ordering, library and data structure usage, and naming conventions. Additionally,
developers can have personal preferences in coding style (e.g., preferring j as a loop variable
to i). These motivate us to develop models that adapt their parameters to unseen contexts
“on the fly", i.e. they efficiently adapt to test files, even if the file contains identifiers and
conventions that were unseen at training time.

A popular approach for model adaptation employed for natural language (Mikolov et al.,
2010; Krause et al., 2018) and also advocated for source code (Karampatsis et al., 2020)
is dynamic evaluation. With dynamic evaluation, we allow updating the parameters of a
trained model on tokens in test files, from the first token to the last. To avoid bias and
obtain an unrealistically optimistic measure of performance (i.e. cheating), the prediction of
a token in a test file is made before updating the model’s parameters.



Fig. 6.1. Block diagram illustrating our approach for a sample file. To predict
hole target StandardPropertyManager using hole window (wh), our model learns

parameter θk by performing k steps of gradient update using support tokens (ts) and
support windows (ws) in its inner loop.

In this work, to reflect the way a software developer uses auto-completion in an IDE,
we consider an evaluation setting that we call line-level maintenance. We imagine a cursor
placed before a random token in a given file. We blank out the remainder of the line following
the cursor to simulate a developer making an in-progress edit to the file. The task is then
to predict the token (or hole target) that follows the cursor. This setting is different from
the language modelling setting, where a test file is generated from scratch one token at a
time, from top to bottom. Similarly, dynamic evaluation is ill-suited to this setting, as it
processes tokens in that same order. Instead, we propose to select targeted information from
both before and after the hole as a basis for adaptation.

In this work, we introduce Targeted Support Set Adaptation (TSSA), which leverages the
notion of support windows and support tokens retrieved “on the fly” at test time. Figure 6.1
presents the specific task of predicting, on line 20, a hole target th from its hole window
wh or preceding tokens. To improve this prediction, in TSSA we leverage support tokens
ts (along with preceding tokens or support window ws), which are tokens from around the
file that we believe to be particularly influential in defining the nature of the local context.
Intuitively, these could be tokens that are unique to the file and hence provide strong signal
for adaptation. In Figure 6.1, lines 3 and 160 show the corresponding support windows (light
blue shading) and support tokens (dark blue shading). The inner loop predicts support tokens
ts from support windows ws and takes multiple gradient steps to update the parameters of
the source code model and reduce the loss of its predictions. The updated parameters are
then used to predict the hole target th from the hole window wh. Our contributions can be
listed as follows:
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• We introduce TSSA, which formulates the problem of adaptation to the local, unseen
context in source code by retrieving targeted information (support tokens) from both
before and after the hole in a file. (Section 6.3.2).
• We consider a new setting that we call line-level maintenance for evaluating models

for source code in a way that is directly inspired by the way developers operate in an
IDE (Section 6.3.1).
• Via experiments on a large-scale Java GitHub corpus, we demonstrate that TSSA

significantly outperforms baselines including dynamic evaluation, even with half the
number of adaptation steps. Further, via ablations, we show that we improve perfor-
mance on identifiers and literals by about 44% and 19% respectively (Section 8.3.3).

6.2. Related Work
There have been numerous efforts in developing models for source code, such as n-gram

based (Hindle et al., 2012; Nguyen et al., 2013), CRF-based (Raychev et al., 2015; Bich-
sel et al., 2016), probabilistic graphical model based (Maddison & Tarlow, 2014; Raychev
et al., 2016; Bielik et al., 2016); and Neural-networks based (White et al., 2015; Allamanis
et al., 2018b; Dam et al., 2016). Some of these focus specifically on code-completion appli-
cations (Raychev et al., 2014; Alon et al., 2019; Svyatkovskoy et al., 2020; Li et al., 2018;
Wang et al., 2020; Svyatkovskiy et al., 2020). To tackle the specific challenge of local context
adaptation Tu et al. (2014) combined an n-gram with the concept of a cache. Later, Hel-
lendoorn & Devanbu (2017a) extended this idea to develop nested n-gram models combined
with a cache. The components in the cache could then come not only from the current file
but also from other files in the directory or project, leading to significant improvements in
performance. This idea could be adapted to our setting, by collecting support tokens be-
yond just the current file. Follow-up work from Karampatsis et al. (2020) has established
the current state-of-the-art. They use deep recurrent models based on subword units. They
apply dynamic evaluation by performing updates using information from all the files in a
project and carrying over the updated value of parameters from one test file in the project
to another during evaluation. However, on average this results in a long chain of adaptation
steps before a prediction is made, which may present challenges when deploying in a real
IDE (e.g., how to do quality control when the parameters used in the deployed system won’t
be known at release time?). In this work, we instead focus on and perform controlled exper-
iments in a single file setting with a much smaller number of allowed update steps, which is
more generally applicable.
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6.3. Methodology

6.3.1. Line-level Maintenance

The line-level maintenance task is both more realistic (developers typically edit files
rather than generating them from left-to-right) and creates the need for stronger forms of
adaptation. More concretely, we refer to a file f as a sequence of tokens t1, t2, ....tN . As
per Karampatsis & Sutton (2019), we represent each token tn = (s1,s2..., sln) as a list of
ln subtokens. Our task is to predict the first token (called hole target) in the blanked-out
range, which occurs at a particular position in the file. For an example, refer to Figure 6.1
where the hole target is highlighted in dark orange and the blanked out range is highlighted
in black. Note that we are not allowed to use any token from the blanked-out range.

6.3.2. Adaptation

Base Model We begin by defining a base model, which is a Seq2Seq (Sutskever et al.,
2014) model trained to predict the sequence of subtokens in the hole target th from the
sequence of subtokens in the hole window wh using parameters θ. The probability of hole
target given its window can be written as

p(th|wh; θ) =
∏
si∈th

p(si|si−1,..., s1, w
h; θ). (6.1)

During the training of the base model, each token in the file is used as a hole target.
Targeted Support Set Adaptation (TSSA) To adapt the base model to the local file

context, we consider regions from the file that potentially provide useful cues for predicting a
given hole target. We call this set of tokens and preceding windows the support set, inspired
by the usage of the term in few-shot learning (Vinyals et al., 2016). Each element of the
support set, S = {(ws, ts)} is a pair of support window ws and support token ts. The support
windows and support tokens can come from anywhere in the file except for the blanked out
remainder of the line following the hole target.

To adapt the model given a support set, we perform k steps of gradient descent over each
of the k mini-batches of support windows and tokens. In each step, we predict the support
token from the corresponding support window using the base model with parameters from
the previous step. The support loss at step i and the updated parameters at step i can be
written as

Ls
i =

1

b

b∑
j=1

log p(tsij|ws
ij; θi−1) (6.2)

θi = θi−1 − α∇θi−1
Ls

i [Inner Update], (6.3)
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where i ∈ {1, . . . ,k}, θ0 = θ, b = mini-batch size and α = hyperparameter corresponding
to the inner adaptation learning rate. We then use the updated parameters θk to predict the
hole target from its hole window, resulting in the hole loss Lh

Lh = log p(th|wh; θk). (6.4)

Support Set Selection Strategies A key novelty in this work is the idea of actively
choosing a support set that leads to effective adaptation. This is in contrast to, e.g., few-shot
learning, where the support set is defined by the task and cannot be changed. We can think
of it being similar to self-supervised learning in the sense that the tasks are created from the
given context.

In source code, identifiers are the most difficult to predict (Allamanis & Sutton, 2013)
and also the most frequent of all token-types (Broy et al., 2005), making it the most common
use-case for auto-complete systems. Thus, our definitions of support tokens are aimed at
providing additional context that should help in predicting identifiers. We are motivated
by the fact that identifiers are frequently re-used within a file even if they are uncommon
across files (or even if they only appear in one file). Further, even when there is not an exact
match, it is common for there to be repeated substructure in identifiers. Our work offers
advantage compared to just using a powerful base model, like a transformer which has fixed
context window size around the target hole and hence is ineffective to make use of these
patters which are far away from the cursor in the current file, especially if the file is long.

With this in mind, we explored four definitions of support tokens (which contribute
towards determining the support sets): (a) Vocab: Tokens that are rare in the corpus;
(b) Proj: Tokens that are relatively common in the current project but are rare in the
rest of the corpus; (c) Unique: Single occurrence of a token in the support set; and (d)
Random: Tokens are randomly selected. More details about each of these can be found in
Appendix 6.A.

6.4. Experiments and Results

6.4.1. Experimental Details

For our experiments, we work with the Java GitHub Corpus provided by Allamanis
& Sutton (2013). All our models are Seq2Seq networks where both encoder and decoder
networks are recurrent networks with a single layer of 512 GRU (Cho et al., 2014) hidden
units, preceded by a trainable embedding layer of equal size. To train the base model, we
create minibatches of successive target holes as in standard training of language models, and
we train to minimize average token loss. We use mini-batches of support tokens and the
Adam (Kingma & Ba, 2015b) optimizer in the adaptation inner loop. An important note is
that during evaluation, at the beginning of each inner loop execution, we not only set θ0 to θ,
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but also set the state of the Adam optimizer to its value from the end of training. The latter
step ensures that the statistics for Adam are not carried from one file to another. Details
about the dataset and preprocessing; and best hyperparameter values for all settings can be
obtained from Appendix 6.B and Appendix 6.C, respectively.

6.4.2. Evaluation Setup

There is a trade-off between accuracy and number of inner loop updates of adaptation.
More inner loop updates generally improve cross-entropy but come at the cost of computation
time and ultimately latency in a downstream auto-complete application. To control for
this, we fix the size of batches and number of updates per hole target prediction across
all adaptive methods. We measure the performance of our models in terms of token cross-
entropy, MRR@10 and Recall@10 (see Appendix 6.E for details on these metrics). We
experimented with the following methods:

• Base model: This is the pretrained base model used as is, without any contextual
adaptation. This comparison allows us to confirm the benefit of adaptation in general.
• TSSA-k: This corresponds to doing k steps of inner loop adaptation using support

tokens. We also report results for TSSA-1 (single inner-loop update), to highlight
the value of multiple updates.
• Dynamic Evaluation: We also implement dynamic evaluation in our framework

which is a bit different from in Karampatsis et al. (2020). Here, 1) the support sets
are made of all window/tokens pairs (ws,ts) appearing before the hole target (and
none after), and 2) we constrain the inner-loop optimization to order its updates
by starting at the beginning of the file, until the token right before the hole target.
Thus, the first inner-loop mini-batch of size b contains tokens at the beginning of
the file, while the tokens immediately before the hole target only appear in the last
mini-batch. Moreover, if the hole target is the mth token in the file, then there will be
ceil(m/b) updates in total. The variants of TSSA assume a fixed number k of inner-
loop updates, unlike dynamic evaluation. To allow for an overall fair comparison, we
set k to the average number of updates performed by dynamic evaluation, which was
found to be approximately 16 for our test data.

6.4.3. Results

Performance on Hole Target Prediction: In Table 6.1, we report the average cross-
entropy, MRR@10 and Recall@10 for test hole targets (all token types and identifiers). In
these results, we sample five holes per file to measure test performance. For each method, we
select the best values of hyperparameters using the performance on the validation data. As
can be seen from the table, TSSA-16 gives the best performance in terms of cross-entropy,
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Table 6.1. Performance on hole target prediction on test data in terms of token
cross-entropy, MRR@10 and Recall@10. We also report 95% confidence intervals for each

entry. We highlight the best performing models (in terms of mean) for each column.

Model Cross
Entropy

MRR@10
(All)(%)

MRR@10
(Identifiers)(%)

Recall@10
(All)(%)

Recall@10
(Identifiers) (%)

Base Model 5.222 ± 0.10 65.20 ± 0.42 24.90 ± 0.64 75.74 ± 0.42 36.20 ± 0.78
Dynamic Evaluation 3.540 ± 0.08 68.95 ± 0.41 34.44 ± 0.70 80.39 ± 0.39 48.86 ± 0.82

TSSA-1 3.461 ± 0.07 66.94 ± 0.40 35.76 ± 0.70 81.00 ± 0.38 52.04 ± 0.82
TSSA-8 3.383 ± 0.06 67.52 ± 0.40 35.14 ± 0.70 80.65 ± 0.38 50.27 ± 0.82
TSSA-16 3.240 ± 0.06 68.63 ± 0.40 36.74 ± 0.70 81.51 ± 0.38 52.34 ± 0.82

Table 6.2. Comparison of cross-entropy on prediction of identifiers and literals for
TSSA-16 vs. a non-adaptation model.

Token Type Base model TSSA-16 % Improvement

Identifiers 13.16 7.35 44.15
Literals 7.18 5.82 18.94

Fig. 6.2. Average hole target cross-entropy for each token-type for our TSSA-16 model.

MRR(Identifiers) and Recall; and is comparable to dynamic evaluation in terms of MRR
(all). It is interesting to note that even TSSA-1 and TSSA-8 outperform dynamic evaluation
in terms of cross-entropy, MRR(Identifiers) and Recall; even though they perform signifi-
cantly less adaptation steps (single and half the number of adaptation steps, respectively as
compared to dynamic evaluation (16)). This huge saving in terms of computational cost, is
especially attractive while deploying models in an IDE where low latency is required.

Performance based on Token-Types: We analysed how our framework performs with
hole targets of different token types (See Appendix 6.D for categorization of token-types). As
can be seen from Figure 6.2, identifiers and literals (string literals, char literals, etc.) are the
most difficult to predict amongst all token types. Table 6.2 shows the comparison of average
test cross-entropy values for the non-adaptive base model as compared to our best model
(TSSA-16). As can be seen from the table, we obtain significant reduction in cross-entropy
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Fig. 6.3. Improvement due to TSSA on small capacity model (blow −mlow) vs.
Improvement due to big model (blow − bhigh)

values of about 44% and 19%, respectively in case of identifiers and literals. This in turn
leads to better performance overall.

TSSA vs. Bigger Model One question is if benefits gained from TSSA are similar to
or orthogonal to benefits that would arise from using larger and more sophisticated models.
To study this question, we start from a “small base model” (256 hidden units) and build
two models that improve, but in different directions. The first “big base model” increases
the model size to 512 hidden units. The second “small TSSA” model leaves the hidden sized
fixed but employs TSSA-16. We then compare how individual examples benefit from each
kind of modelling improvement. Specifically, let the hole target cross-entropy for the small
base model be blow, for the big base model be bhigh, and for the small TSSA model be mlow.
In the right part of Figure 6.3 we plot the improvement obtained due to higher capacity
model blow− bhigh on the x-axis and improvement due to the low-capacity meta-learnt model
blow −mlow on the y-axis. Each point represents a different test hole target. The line marks
cases where improvement from both models is equal. First, we see that the majority (57.7%)
of the points are above the line, indicating that applying TSSA improves on more cases than
increasing the model size. Second, and perhaps more interestingly, there are many points
where the improvement due to increasing model size is near zero, indicating that we have
achieved saturation in benefit due to increasing model size in these cases. However, using
TSSA here, even with the small model, often leads to a large improvement in performance.
This shows that TSSA can help in adapting even when we reach saturation in terms of model
capacity.

Performance based on Support Token Selection Strategies: We also experimented
with the definition of support tokens where in one case we fixed the number of updates (16),
while in the second we fixed the number of support tokens (256). Figure 6.4 displays the
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Fig. 6.4. Variation of token cross-entropy for val data with different definition of support
tokens. (Left) With fixed number of updates; (Right) With fixed number of support

tokens.

results for validation data. We see that the Vocab definition of support tokens performs
best closely followed by Proj. On the other hand, Unique and Random perform worse in
both cases. This highlights the fact that how we define support tokens indeed plays a role
in performance improvement. We provide sample cases as well as some additional results
including ablation studies with variation in the number of updates and number of support
tokens in Appendix 6.G and 6.F, respectively.

6.5. Conclusions
In this work, we propose TSSA: an approach which selects targeted information from the

local context and then uses this to learn adapted parameters, which can then be used for
predicting a hole target in the current file. Our experiments on a large-scale Java GitHub
corpus reveal the following: (a) Our formulation significantly outperforms all baselines in-
cluding a comparable form of dynamic evaluation, even with significantly less adaptation
steps in many cases; (b) Most of our performance benefits comes from reducing the cross-
entropy on identifiers and literals. For future, we want to learn the criteria for building
support sets.
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Appendix for the second article

6.A. Support Set Definitions
In all cases, we ensure that the selection of support sets does not depend on the hole

target or the blanked out region following the hole target.
(1) Vocab: We try to capture tokens that are rare in the corpus as part of support

tokens. We take all the tokens from the file and sort them based on their frequency
in the vocabulary in reverse order and then take the top-N entries.

(2) Proj: Here, as part of support tokens, our target is to capture tokens that are
relatively common in the current project but are rare in the rest of the corpus. We
divide each token’s frequency in the project with the frequency in the vocabulary,
sort them and then take the top-N entries.

(3) Unique: To study if multiple occurrences of the same token in the support set helps,
we form a set of tokens in the file. We then take a subset of N tokens as part of our
support set. Here, each support token in the support set is unique.

(4) Random: We take N random tokens from the file as support tokens.

6.B. Dataset and Preprocessing
We work with the Java GitHub Corpus provided by Allamanis & Sutton (2013). It

consists of open-source Java repositories for more than 14000 projects. Java is a convenient
choice as it is one of the most popular languages for software development and has been widely
used in previous works (Karampatsis & Sutton, 2019; Tu et al., 2014). Following Hellendoorn
& Devanbu (2017a), we focus on a 1% subset of the corpus. The name of the projects in
training, validation and test splits of the dataset were taken from Hellendoorn & Devanbu
(2017a)1. Statistics of the data are provided in Table 6.3. Note that while we show results
on Java, our method is otherwise applicable to corpora of any programming language.

We made use of the lexer provided by Hellendoorn & Devanbu (2017a)1 to tokenize the
files, preserving line-breaks. Note that the lexer also removes comments in the file. We
need to use a Java-specific tokenizer because characters such as dot or semi-colon take a
1https://github.com/SLP-team/SLP-Core



Table 6.3. Corpus Statistics for 1% split of the dataset. M indicates numbers in millions.

Feature Train Val Test

# Projects 107 36 38
# Files 12934 7185 8268
# Lines 2.37M 0.50M 0.75M
# Tokens 15.66M 3.81M 5.31M
# Identifiers 4.68M 1.17M 1.79M

special meaning in Java and are not tokenized as individual tokens by NLP parsers. To
get the Java token-types, we made use of Python’s Java-parser.2 Subword tokenization was
performed using the subword text encoder provided by Tensor2Tensor (Vaswani et al., 2018).
As in Karampatsis & Sutton (2019), we use a separate vocabulary data split, consisting of
a set of 1000 randomly drawn projects (apart from the projects in 1% split), to build the
subword text encoder. In addition, we append an extra end-of-token symbol (EOT) at the
end of each Java token. The final size of the subword vocabulary is 5710.

6.C. Details of Hyperparameter Values
In all settings of our Seq2Seq Models, the initial decoder state is set to be the last state

of the encoder. The first input to the decoder is the last step output of the encoder. A dense
layer with softmax output is used at the decoder. Also, note that both the parameters of
the model and the state of Adam is reset after each hole target during evaluation. We use
a dropout = 0.5 and gradient clipping = 0.25. We embedding layer dimension is equal to
the hidden layer dimension = 512. We take both the support and hole window size to be
200. In Table 6.5 we define the best hyperparameter values for all our settings. Notation
for reading Table 6.5 is provided in Table 6.4. For our experiments, we use NVIDIA P100
and K80 GPUs with 16GB memory each. To reduce model computation while decoding, we
remove hole targets of length greater than or equal to 20 subwords. These constitute only
0.2% of the total number of tokens in training data and 0.1% in validation and test data,
making it less significant.

2https://pypi.org/project/javac-parser/
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Table 6.4. Notation for terms occurring in Table 6.5

Symbol Meaning

lr learning rate of Adam optimizer
hbs hole batch-size
dbs batch-size of tokens in dynamic evaluation
sbs support tokens batch-size
#up number of inner loop updates
snum number of support tokens
sdef definition of support tokens
ilr learning rate of inner update Adam optimizer
T: while training/ meta-training
E: while evaluation

Table 6.5. Best hyperparameter values for all our settings.

Model Hyperparameters

T: Base Model lr = 1e-4, hbs = 512
E: Base Model hbs = 1
E: Dynamic Evaluation lr = 1e-3, , hbs = 1, dbs = 20
E: TSSA-1 lr = 5e-3, hbs = 1, sdef = proj, snum = 1024
E: TSSA-8 lr = 1e-3, hbs = 1, sbs = 20, sdef = vocab, #up = k = 8, snum = 256
E: TSSA-16 lr = 5e-4, hbs = 1, sbs = 20, sdef = vocab, #up = k = 16, snum = 256

6.D. Categorization of Token Types

Table 6.6. Description of Java token-types given by Python’s Java-parser into broad
token categories for ease of visualization.

Token Category Java Token-Type
Identifiers identifier

Keywords
import, break, throws, extends, for, public, return, protected, boolean, package, new, class,
void, static, int, this, volatile, synchronized, if, private, final, implements, super, catch, try,

throw, else, instanceof, long, abstract, enum, case, byte, char, break, interface, finally

Operators dot, gt, lt, eq, plus, eqeq, colon, bangeq, ques, ampamp, sub, bang,
plusplus, barbar, star, amp, gteq, subsub, bar, ellipsis

Literals stringliteral, intliteral, charliteral, longliteral, null, false, true
Special Symbols semi, rparen, lparen, lbrace, rbrace, comma, monkeys_at, rbracket, lbracket

6.E. Evaluation Metrics
• Cross-Entropy. It is the average negative log probability of tokens, as assigned by

the model. It rewards accurate predictions with high confidence and also corresponds
to the average number of nats required in predicting a token. The cross-entropy of a
sequence T with probability p(T ) under a model, is:

Hp(T ) = −
1

m
log p(T ) (6.5)
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We evaluate the average under a distribution over hole target tokens where we first
sample a file uniformly from the set of all files and then sample a hole target token
uniformly from the set of all tokens in the file. This reflects the assumption that a
developer opens a random file and then makes an edit at a random position in the
file.
• MRR/ Recall: Since our approach can be used for code-completion (predicting

the hole target), we need some metrics to measure the accuracy at this task. Mean
Reciprocal Rank (MRR@n) is the average of the inverse of the position of the correct
answer in a ranked list of size n. Recall@n is 0 or 1 based on the absence or presence
of the correct answer in the ranked list of size n.

6.F. Variation with #support tokens and #updates

Fig. 6.5. Variation of hole target cross-entropy values with number of updates and
number of support tokens for the validation data.

We took our best performing TSSA-16 for all the experiments that follow. In Figure 6.5,
we plot the variation of hole target cross-entropy values with the number of updates and
number of support tokens (N from Section ??), for validation data. As can be seen from the
plot, the cross-entropy decreases with more updates. We also see that for a fixed number of
updates, the cross-entropy decreases with the number of support tokens only until it reaches
a certain point after which it increases. This likely arises from the way we form mini-batches
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of support tokens where we first shuffle the support tokens and then cycle through them
until exhausting the number of updates. This suggests that going past the point where each
support token has been visited once creates redundancy that is detrimental.

6.G. Sample Cases
In Figure 6.6 we showcase two such sample cases. For the left one, we have a string

literal as hole target (“column("). We can see that fragments of it can be found in support
tokens (highlighted in blue). The right one has an identifier (WGLOG) as hole target.
Somewhere far later in the file, we find a support token that exactly matches the hole target,
contributing to a large gain in performance of TSSA as compared to no adaptation. In
neither of these cases does a larger or more sophisticated base model help in harnessing this
extra information.

Fig. 6.6. Sample cases illustrating the benefits of TSSA on low capacity model: (Left)
Hole target is string literal with partial match in support tokens; (Right) Hole target is

identifier with exact match in support tokens.
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Chapter 7

Prologue to the third article

7.1. Article Details
Repository-Level Prompt Generation for Large Language Models of Code.

Disha Shrivastava, Hugo Larochelle, Daniel Tarlow. This article (Shrivastava et al., 2022)
was accepted for publication at the International Conference on Machine Learning
(ICML) 2023 .

Personal Contribution The project began with discussions between Disha Shrivastava,
Hugo Larochelle and Daniel Tarlow. Given the excitement around the recent launch of
GitHub Copilot1 and the growing recognition of prompting as a potential strategy for adapt-
ing LLMs to downstream tasks in NLP, Disha Shrivastava decided to systematically investi-
gate the effect of placing varied code contexts in the prompts for Codex (Chen et al., 2021) -
the model used in GitHub Copilot and the state-of-the-art model of source code at that time.
We extended the concept of obtaining useful context from beyond the scope of the current
file (Chapter 6), to also incorporate a more comprehensive level, encompassing the entirety
of the repository. Disha Shrivastava was involved in coming up with the idea, formulating
the framework for selecting relevant repository-level context, writing all of the code, running
the experiments, and writing the paper. Hugo Larochelle and Daniel Tarlow advised on the
project and were involved in the discussion of results, suggesting experiments to run and
offering constructive critique during the drafting and revision phases of the paper.

7.2. Context
The goal of this work was to provide mechanisms to incorporate domain-specific knowl-

edge in the prompt design process for an LLM of code. We proposed a framework called
Repo-Level Prompt Generator (RLPG) that learns to condition on the context around the
intended completion and generates a relevant prompt using prompt proposals. The prompt

1https://copilot.github.com/



proposals take context from the entire repository, thereby incorporating both the structure
of the repository and the context from other relevant files (e.g. imports, parent class files).
In terms of the broader theme of the thesis (see Section 1.1), RLPG serves as the Enhance

module that helps select the most relevant context given contextual cues in the form of dif-
ferent prompt proposals (support context Z). This context in turn when used to prompt the
pretrained LLM (Predict module) helps in generating the desired code completion (target
Y ). The subsequent chapter (Chapter 8) discusses this work in detail.

7.3. Contributions
We proposed a framework that, without requiring access to the weights of the LLM,

generates a relevant prompt that is conditioned on the example at hand as well as the overall
structure and contents of the repository. On the task of single-line code-autocompletion, we
show that an oracle constructed from our proposed prompt proposals gives up to 36% relative
improvement over Codex. This improvement is pleasantly surprising as Codex has never seen
prompts made from these prompt proposals during training. Further, we show that when we
use our prompt proposal classifier to predict the best prompt proposal, we can achieve up to
17% relative improvement over Codex, as well as improve over other baselines. In addition,
we open-sourced the code, data and trained models for the work to facilitate future research
in this direction.

7.4. Research Impact
One of the major advantages of our work is that it doesn’t require any access to the

weights of the LLM making it applicable in cases where we only have black-box access to
the LLM. This encompasses most of the currently high-performing LLMs, such as GPT-4
and Bard. As LLMs continue to be integrated into products, this trend is set to expand,
thereby emphasizing the importance and potential impact of our work. Even though our
work is relatively new, it has inspired other works (Zhang et al., 2023; Ding et al., 2022)
that try to use context from the repository to prompt the LLM. Recently, there is also a
work-in-progress project to incorporate repository-level context in GitHub-Copilot2 in order
to make more context-aware predictions.

2https://githubnext.com/projects/copilot-view/
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Chapter 8

Repository-Level Prompt Generation for Large
Language Models of Code

8.1. Introduction
Large Language Models (LLMs) have demonstrated remarkable performance in natural

language processing tasks (Brown et al., 2020a; Chowdhery et al., 2022), text-to-image gen-
eration (Ramesh et al., 2022a; Rombach et al., 2022) and even as a generalized agent (Reed
et al., 2022). As opposed to the pretrain-finetune paradigm, prompting these LLMs have
been found to yield good performance even with few-examples (Liu et al., 2021a). Besides
providing a mechanism to control and evaluate a LM, prompts have been shown to elicit
emergent behaviour as well. Examples of this behavior include GPT-3 (Brown et al., 2020a)
doing better in tasks it has never seen during training and improved reasoning capabilities
with few-shot (Wei et al., 2022) and zero-shot (Kojima et al., 2022) prompts that encour-
age a chain of thoughts. These factors highlight the importance of designing an effective
task-specific prompt. However, currently we have a limited understanding of how to do
this (Reynolds & McDonell, 2021). LLMs have also been used for modeling source code with
impressive results (Austin et al., 2021; Fried et al., 2022; Xu et al., 2022a). In particular,
one of the best performing LLM, Codex (Chen et al., 2021), has been deployed as part of
GitHub Copilot 1, a state-of-the-art in-IDE code assistant. Despite the growing popularity
of LLMs of code, there is no work that systematically tackles different aspects of prompt
generation in relation to source code. One such aspect is that when it comes to code, the
relevant context to be put in the prompt can come from not just the current file, but also
from outside, such as imports, parent classes, files within the same directory, and API doc-
umentation. Also, depending on the scenario, the relevant context can be scattered across
multiple locations. Since the LLMs have a limited context length available for the prompt, it
becomes increasingly crucial for our domain-specific understanding to guide the selection of

1https://copilot.github.com/



Fig. 8.1. Figure explaining the idea of Repo-Level Prompt Generator: Given a
list of prompt proposals and the target hole position along with the associated repository
as input, the prompt proposal classifier predicts a prompt proposal. The context from the
predicted prompt proposal p = 14, i.e., method names and bodies from the imported file

(highlighted in violet) is then combined with the default Codex context or context prior to
the position of the hole in the current file (highlighted in gray) to compose a prompt.
Prompting Codex with the generated prompt produces a prediction for the target hole

(highlighted in dark red).

relevant context. Currently, it is not clear how to integrate this domain knowledge of what
constitutes a relevant context, into the generation of prompts. Addressing this question has
potential benefits in other domains such as question answering (Liu et al., 2022) and multi-
document summarization (Xiao et al., 2022), where domain-specific structured retrieval of
context can be useful.

In this work, we address this problem by proposing Repo-Level Prompt Generator
(RLPG), a framework that while generating the prompt, incorporates both the structure
of the repository as well as the relevant context in the files in the repository. In RLPG, the
choice of where from and what to take from the repository is specified by a set of prompt
proposals. For example, one of the prompt proposals can be to take all the identifiers used
in the first import file. These prompt proposals allow the prompt engineers to induce their
domain expertise in the prompt-designing process. With the increasing use of LLMs as
assistive agents to humans, the demand for transparency, and the desire of software engi-
neers to tailor prompts to suit their requirements (Jiang et al., 2022; Sun et al., 2022), this
capability becomes important. Similar to some previous works in NLP (Shin et al., 2020;
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Schick & Schütze, 2021), our prompt proposals are discrete. However, rather than fixing one
particular prompt proposal for each example, we instead predict the best prompt proposal
conditioned on the example. We do this by coming up with a neural network called Prompt
Proposal Classifier (PPC) that learns to select a prompt proposal such that the resulting
prompt is likely to produce the desired output. Therefore, RLPG allows the introduction
of domain expertise, and at the same time facilitates automatic example-specific prompt
generation via a learned neural network. Note that there are some techniques for automatic
prompt generation in NLP (Li & Liang, 2021; Shin et al., 2020; Lester et al., 2021) that
require updating some or all of the weights of the LLM. However, the strongest LLMs are
not publicly available (e.g. OpenAI provides access only to the generated output from Codex
via an API https://openai.com/blog/openai-codex/ and no access to model weights and
data is provided), making these techniques less useful under this scenario. RLPG addresses
this limitation by generating prompts assuming only black-box access to the LLM. Even for
cases where we have access to the model weights, RLPG provides a way to adapt to the
repository-level context without having the need to finetune the model repeatedly. This
can be particularly useful when adapting to a repository that contains proprietary or niche
software, that the model has limited chances of seeing during training.

We focus on the task of single-line code autocompletion in an IDE, where the objective is
to predict the blanked-out portion (or target hole) starting from the position of an imagined
cursor to the end of the line (highlighted in blue in Figure 8.1). We operate under the
line-level maintenance setting (Shrivastava et al., 2020; Hellendoorn & Devanbu, 2017b) that
reflects the scenario where a user is editing an existing file. This means that there can be code
following the line. Figure 8.1 provides an illustration of our approach. The prompt proposal
classifier takes in the hole position (position of the cursor) in the current file, the repository to
which the current file belongs, and a set of repo-level prompt proposals as input, and predicts
a prompt proposal. In our illustrated example, the predicted prompt proposal corresponds
to taking the method names and bodies from MaximizingGibbsSampler.java (mg.before
the hole position indicates that a method from the imported file is likely to be invoked).
The Prompt Composer uses the context from the predicted prompt proposal and combines
it with the default Codex context, i.e., code prior to the position of the hole in the current
file. The resulting prompt consists of the method name InitializeToAssignment (from the
prompt proposal context) and the method CurrentAssignments() (from the default Codex
context), resulting in a successful prediction (brown box on the top) of the target hole. Our
key contributions are as follows:

• We propose a framework called the Repo-Level Prompt Generator (RLPG) that learns
to generate prompts conditioned on the example, without requiring access to the
weights of the LLM.
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• RLPG allows us to use both the structure of the repository as well as the relevant
context from all files in the repository, thereby providing a mechanism to incorporate
domain knowledge in the prompt generation process.
• On the task of single-line code-autocompletion, we show that an oracle constructed

from our proposed prompt proposals gives up to 36% relative improvement over
Codex. This improvement is pleasantly surprising as Codex has never seen prompts
made from these prompt proposals during training. Further, we show that when
we use our prompt proposal classifier to predict the best prompt proposal, we can
achieve up to 17% relative improvement over Codex, as well as improve over other
baselines.

8.2. Repo-Level Prompt Generator (RLPG)
In this section, we provide details of our framework. We start by describing our prompt

proposals and then discuss our prompt proposal classifier which is followed by a description
of the prompt composer.

8.2.1. Repo-Level Prompt Proposals

The core idea of RLPG consists of substituting part of the default context used by Codex
with context coming from somewhere else in the repository. The decision of what to take and
from where in the repository to take from is governed by a set of prompt proposals. These
prompt proposals were decided based on manual inspection of our training data and intend to
capture common coding patterns (but more generally can also include project/organization-
specific coding practices). A prompt proposal can be thought of as a function that takes as
input a target hole’s position and the repository that the hole is a part of, and that returns
the prompt proposal context (a string constituted by the context from the prompt proposal).
A prompt proposal is specified by a prompt source and a prompt context type. We mention
each of these along with their motivation below.

Prompt Source: For a target hole position, a prompt source determines from where
should we take code that will be part of the prompt proposal context. We propose ten
different prompt sources:

(1) Current: take code from the current file excluding the contents of the target hole.
The current file is the file that contains the target hole. The code in the current file
(e.g. the lines after the hole position) can be very useful in predicting the target hole.

(2) Parent Class: take code from the file that contains the parent of the class to which
the target hole belongs. The intuition behind this is to account for cases where a
method present in the parent class is invoked in the current file (i.e. the child class).
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(3) Import: take code from the import files used in the current file. The dependencies
specified via imports can provide useful cues to predict the target hole.

(4) Sibling: take code from the files that are in the same directory as the current file.
Files in the same directory tend to share code variables (e.g. identifiers).

(5) Similar Name: take code from files that have a similar name as the current file.
Similar names are determined by splitting the file name based on underscore or
camel-case formatting and then matching parts of the filename. If one or more parts
matches, two files are considered to have similar names. The intuition behind this
is that software developers tend to name files based on the functionality of the code
written in that file. Therefore, a similar name file might contain some portion of the
code that is common with the current file and hence might be useful for predicting
the target hole.

(6) Child Class: take code from files that have the current file as their parent class file.
(7) Import of Parent Class: take code from the import files used in the parent class

files.
(8) Import of Sibling: take code from the import files used in the sibling files.
(9) Import of Similar Name: take code from the import files used in the similar name

files.
(10) Import of Child Class: take code from the import files used in the child class files.

The last four prompt sources are useful when the target hole occurs at the very beginning
of the current file. In these cases, there would be less context coming from other prompt
sources. For each prompt source, we can get either a single file or a ranked list of files (see
Appendix 8.B.1). In the latter case, we will take context from these files until we exhaust
the maximum context length allocated to the prompt proposal.

Prompt Context Type: The prompt context type determines what code to take from
the prompt source. We propose seven different prompt context types (Appendix 8.B.2 has
examples of each type):

(1) Post Lines (PL): Take all the lines after the target hole line till the end of the
current file 2.

(2) Identifiers (I): Take all the identifiers used in the prompt source.
(3) Type Identifiers (TI): Take all the type identifiers used in the prompt source.
(4) Field Declarations (FD): Take all the field declarations used in the prompt source.
(5) String Literals (SL): Take all the string literals used in the prompt source.
(6) Method Names (MN): Take all the method names along with their signatures

used in the prompt source.

2We also conducted experiments (Appendix 8.D.3) where we take lines starting from the 4th line after the
hole.
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(7) Method Names and Bodies (MNB): Take all the method names along with their
signatures and corresponding bodies used in the prompt source.

By combining prompt sources with prompt context types, we get a total of 63 prompt
proposals (see Appendix 8.B.4 for details). Note that depending on the target hole, not all
prompt proposals would be applicable (e.g. if there are no parent classes in the current file,
prompt proposals with prompt source as parent class file won’t be applicable). In Figure 8.1,
the predicted prompt proposal corresponds to taking prompt source Import and prompt
context type MNB. We aimed for a set of prompt proposals that offer more diversity rather
than a set of prompt proposals that are all good. This in turn ensures that for any hole
position, a significant number of prompt proposals are applicable.

8.2.2. Prompt Proposal Classifier (PPC)

Given a hole position, the goal of the prompt proposal classifier is to predict the prompt
proposal p that will lead to success, where success happens when the predicted hole ĥ exactly
matches the target hole h. This task is formulated as a multi-label binary classification
problem since for a given target hole, more than one prompt proposals can lead to success.
In this formulation, we treat the default Codex context as one of the prompt proposals.
Next, we describe the training procedure for PPC.

Training: For each target hole h, we generate a ground-truth vector Y h = [yhp ]
M
p=1 which

is a multi-hot vector of size M , where M is the total number of prompt proposals. This
vector is obtained by feeding the prompt generated from prompt proposal p into Codex
and then seeing whether ĥ = h. If there is a match, we say that the prompt proposal p
is successful. For hole h, if a prompt proposal p is applicable and leads to success, yhp = 1

and will be zero otherwise. For each hole h, we obtain a mask T h where T h
p = 1 when p

is applicable or zero otherwise. The overall training loss L can be expressed as the sum of
individual hole losses Lh:

L =
1

N

N∑
h=1

Lh =
1

N

N∑
h=1

1

Mh

Mh∑
p=1

BCE(ŷhp , y
h
p ) ∗ T h

p

In the above equation, Mh =
∑

p T
h
p denotes the total number of applicable prompt proposals

for h, N is the total number of holes encountered while training and BCE corresponds to
the binary cross entropy loss. Masking ensures that we consider only the prompt proposals
that are applicable. Next, we describe our two variants of PPC that can be used to obtain
the prediction ŷhp .

RLPG-H: Let Hh be the hole window that includes code present around the hole h

excluding the hole itself. In our work, we take two lines before the hole position, the code up
to the hole position and two lines after the hole position. We use a pretrained model Fϕ to
obtain a context representation vector of size Z, where Z is the dimension of the hidden state
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of the model. Specifically, we take the hidden state at the first position, i.e. the representation
of the [CLS] token. To make training of PPC computationally efficient, the parameters ϕ

are frozen during training. The RLPG-H model takes the context representation of the hole
window and projects it to the prompt proposal space of size M via two dense layers with
a non-linearity in between (see Equation 8.1). Taking the sigmoid of this output gives the
prediction of the prompt proposal.

ŷhp = P (yhp = 1|Hh)

= sigmoid(W 2(relu(W 1(Fϕ(H
h)) + b1)) + b2) (8.1)

RLPG-R: The motivation behind this variant is to use the similarity of the hole window
and the prompt proposal context to determine which prompt proposal can be useful. Given
a particular hole h, let Ch

p denote the prompt proposal context from prompt proposal p.
Intuitively, if the hole window contains variables (e.g. identifiers) that are similar to the
variables in the prompt proposal context, then there are chances that h might occur some-
where in Ch

p . The similarity is modeled using a multiheaded attention mechanism (Vaswani
et al., 2017b), by treating the projected hole window representation as a query Qh and the
projected prompt proposal context representation Kh

p as a key. The value V h
p is the same as

the key.

Qh = Fϕ(H
h), Kh

p = Fϕ(C
h
p ), V h

p = Fϕ(C
h
p )

The output from the multi-headed attention module, MultiHead(Qh, Kh
p , V

h
p ) is fed to mod-

ule G consisting of two layers of a feedforward network with relu activation in between (see
Appendix 8.C for more details). The resulting output is then linearly projected and a sigmoid
is applied to get the predicted prompt proposal.

ŷhp = P (yhp = 1|Hh, Ch
p )

= sigmoid
(
WpG(MultiHead(Qh, Kh

p , V
h
p )) + bp

)
8.2.3. Prompt Composer

The prompt composer combines the context from the selected prompt proposal (given
by PPC) with the context normally used by Codex (default Codex context) to generate
the prompt. Since the total length that can be used for a prompt is fixed, we adopted a
dynamic context allocation strategy where if the prompt proposal context is shorter than
its allocated length, we assign the remaining portion from the prompt proposal context to
the default Codex context. The prompt proposal context is always added before the default
Codex context. For all prompt proposals, we assign half of the total context length to the
prompt proposal context and the remaining to the default Codex context. For post lines,
in addition, we also assign one-fourth and three-fourths of the total context length to the
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Table 8.1. Statistics of our dataset.

Feature Train Val Test Total

# Repositories 19 14 14 47
# Files 2655 1060 1308 4757
# Holes 92721 48548 48288 189557

prompt proposal context. If the prompt proposal context or the default Codex context is
greater than the context length allocated to it, we truncate it (see Appendix 8.B.3 for our
truncation strategies).

8.3. Experiments and Results
In this section, we describe how we created the dataset, details of experiments along with

different methods and their results, and interesting ablation studies.

8.3.1. Dataset Creation

To mitigate the effects caused by potential memorization of the code present in the dataset
used for training Codex, we avoided code repositories from GitHub (Chen et al., 2021).
Instead, we scraped Google Code https://code.google.com/archive/ for repositories in
Java (removing the ones that matched with a repository on GitHub with the same name).
We selected the repositories that had a permissive license giving us a total of 47 repositories.
We divided the repositories into train, validation, and test splits, where each repository in
its entirety is part of a split. In each file within a repository, we remove lines that are either
blank or part of comments and set the hole position to be the middle character in the line.
All the characters from the middle position to the end of the line constitute the target hole.

Since code duplication has been shown to have adverse effects (Allamanis, 2018), within
a repository, we look for files that are exact replicas of each other but placed in a different
folder. We mark all such copies as duplicates and omit all of them when creating target holes
for our dataset. Further, we found that the repositories were quite uneven in terms of their
size. To avoid large repositories dominating the training of PPC, we capped the maximum
contribution of holes from a repository to 10000, i.e. if the total number of holes in the
repository exceeded 10000, we selected 10000 holes randomly from the total holes. Please
see Table 8.1 for statistics of our dataset. The #Holes represent the holes after deduplication
and capping. For some of our prompt proposals, we require semantic information that can be
obtained with a parse tree. We used the tree-sitter API for Java 3 that enables us to get the
AST of a file and query it. Since our prompt proposals need information at a repository level,
we stored some extra information that allowed us to collate the information from individual
3https://github.com/tree-sitter/tree-sitter-java
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files according to the directory structure inside the repository (see Appendix 8.3.1 for more
details).

8.3.2. Experimental Details

Prompt Generation: We used the OpenAI Codex Completions API for generating the
predicted hole from the Codex model. In particular, we used the code-davinci-001 engine
with the temperature set to 0.0 and stop criteria as a newline. The completion length was 24
and the maximum prompt length was 4072. To allow for fast computation, we used simple
models like CodeBERT (Feng et al., 2020) and GraphCodeBERT (Guo et al., 2020) as our
pretrained models. One of the limitations of these pretrained models is that the maximum
context length that can be taken as input by these models is much smaller than the maximum
context length allowed by Codex. Therefore, in PPC when we obtain the representation of
the prompt proposal context, we need to truncate the context. This might lead to omitting
important parts of the prompt proposal context in certain cases. Using pretrained models
that allow larger context length or models that augment the context (Wu et al., 2022) offer
avenues for future work. See Appendix 8.D.5 for results when we use a smaller context length
with Codex.

Computational Complexity and Scalability of RLPG: To collect the ground-truth
data for training our prompt proposal classifier, we queried the Codex API for each applicable
prompt proposal per hole (with batching of 20 queries, we get a maximum rate limit of 400
holes per minute). This amounts to ∼150k queries to get the labels for the training data,
∼ 80k queries to get the labels for the validation data, making a total of ∼ 230k queries
for training, i.e., 1.63 queries per target hole. The computational complexity of training our
larger RLPG-R variant (3.6M parameters, 141269 holes, and 9.19 minutes per epoch on a
single Tesla V100 GPU) is much smaller than finetuning all or some part of Codex (175B
parameters). During inference, we need to calculate the repo-level statistics just once and
all the subsequent hole completions in the repo can utilize this cached information, incurring
no additional computational complexity. Besides training the PPC, all our experiments
were performed on a CPU with 8GB RAM. Our prompt proposals are based on concepts
such as post lines, imports, similar name files, method names, and identifiers that are quite
general and applicable to other programming languages. In addition to the existing prompt
proposals, our framework provides the flexibility to incorporate new prompt proposals. Since
the cost of retraining RLPG with the extended prompt proposals is extremely low (much
lower than finetuning Codex with the new prompt proposals), our framework can be used to
make interventions on the LLM to address observed weaknesses as long as the intervention
can be expressed as a prompt proposal that adds the missing context to the LLM. As opposed
to techniques that perform prompt engineering in the latent space and require access to the
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weights of the LLM such as Li & Liang (2021), RLPG facilitates expressing intent in the
form of prompt proposals that are intuitive for humans, easy to understand, and do not
require access to the weights of the LLM.

Methods: We experimented with the following methods for generating the prompt:
(1) Codex: Using the default context from Codex as the entire prompt.
(2) Oracle: Using the ground-truth vector Y h (mentioned in Section 8.2.2). The prompt

generated corresponds to using any of the successful prompt proposals (i.e., yhp = 1).
Since this information is not available at inference, the oracle represents an upper
bound.

(3) Fixed Prompt Proposal: Using the most successful prompt proposal for all target
holes. This was chosen based on the performance on the validation set and corre-
sponded to taking 75% of the total context length from post lines in the current
file.

(4) RLPG-H and RLPG-R: Using the prompt proposal predicted by the RLPG-H
and RLPG-H variants of PPC. The selected prompt proposal corresponds to taking
the argmax of the predicted probabilities over different prompt proposals.

(5) RLPG-BM25: Instead of using PPC to rank prompt proposals, use the scores
obtained by BM25 (Jones et al., 2000) to select the best prompt proposal. The
scores are calculated with the hole window being the query and prompt proposal
contexts being the search documents. This serves as a non-learned retrieval method
that makes use of our prompt proposals.

(6) File-level BM25: Same as above, except that instead of using our prompt proposal
contexts, search documents consist of full context from other files in the repository.

(7) Random: For each target hole, select a context randomly from anywhere in the
repository.

(8) Random NN: Same as Random, except that amongst the randomly chosen con-
texts, we take the nearest neighbours of the hole window in the representation space
of a pretrained model. This is analogous to the technique used in Liu et al. (2022).

(9) Identifier Usage: For each target hole, we take the closest identifier and take usage
windows of that identifier from everywhere in the repository. The usage window
consists of two lines above and two lines below the usage line, including the usage
line. We can rank the usage windows either randomly (random) or based on the
nearest neighbour distance to the hole window in the representation space (NN).

The last four methods help us understand the performance when a context other than the
prompt proposal context is used. To generate a prompt using these methods, we take 50%
of the context from these followed by the default Codex context that takes up the remaining
context length. For the NN baselines, we use CodeBERT (Feng et al., 2020) as the pretrained
model. The contexts are taken in the increasing order of the nearest neighbour distances
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Table 8.2. Performance of the oracle relative to Codex.

Data
Split

Success Rate
Codex(%)

Success Rate
Oracle(%)

Rel. ↑
over Codex(%)

Train 59.78 80.29 34.31
Val 62.10 79.05 27.28
Test 58.73 79.63 35.58

until we exhaust the allocated context length. RLPG-BM25 helps us understand the role of
PPC. See Appendix 8.C.3 for more details on the implementation of these methods.

Evaluation Metric: As mentioned in Section 8.2.2, to measure success, we use an exact
match between the predicted hole string generated by Codex and the target hole string. In
our experiments, we report the percentage of successful holes divided by the total number
of holes for each split. We will call this success rate (SR) going forward.

8.3.3. Results

In this section, we present the results of the following two research questions explored in
the paper:

• [RQ1]- Is it useful to generate a prompt that is composed of code context that is
different from the default Codex context? If yes, what context can be useful?
• [RQ2]- For each target hole, is there a way of automatically selecting the prompt?

If yes, how does this system perform relative to Codex?
RQ1 - Performance of Prompt Proposals: We found that combining the prompt

proposal context (context from other files in the repository) with the default Codex context
led to substantial improvement in performance. Table 8.2 shows the performance of an
oracle constructed from our prompt proposals. We see that across all data splits, the prompt
proposals contribute to significantly large improvements over Codex (upto 36% for test split).
These results might seem surprising as Codex has not been trained on prompts that consist
of context other than the default Codex context. What makes this result more surprising is
that in most of the cases, the prompt consists of mashed-up context without logical ordering
that may not even look like a semantically meaningful chunk of code (e.g. list of string
literals from a sibling file followed by the default Codex context or post lines placed before
the default Codex context as opposed to after). These results might suggest that as long as
the relevant context (in our case repo-level knowledge in the form of prompt proposals) is
present in any form in the prompt, it can be quite effective.

RQ2 - Performance of PPC: Having seen promise in our prompt proposals, next, we
present the results of RLPG. Table 8.3 presents the success rates along with the percent-
age of relative improvements for the test data. The success rate is calculated by averaging
across all holes in the test data (hole-wise). As can be seen from the table, all the RLPG
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Table 8.3. Success Rate (SR) of different methods on the test data when averaged across
all holes.

Method Success Rate(%) Rel. ↑(%)

Codex (Chen et al., 2021) 58.73 -

Oracle 79.63 35.58

Random 58.13 -1.02
Random NN 58.98 0.43

File-level BM25 63.14 7.51
Identifier Usage (Random) 64.93 10.55

Identifier Usage (NN) 64.91 10.52

Fixed Prompt Proposal 65.78 12.00
RLPG-BM25 66.41 13.07

RLPG-H 68.51 16.65
RLPG-R 67.80 15.44
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Fig. 8.2. (Left) Variation of RLPG and Fixed Prompt Proposal with #attempts (k);
(Right) Mean success rates of different prompt sources when they are applicable.

variants as well as the fixed prompt proposal improve the performance significantly over
Codex. The random baselines are either worse or on par with Codex. Identifier usage is
a good baseline but still performs worse than either the fixed prompt proposal or RLPG.
We see that File-level BM25 shows that even though better than Codex, it performs infe-
rior to the methods that use some semantically meaningful notion of context (e.g. method
bodies or field declarations). However, when we combine BM25 with prompt proposal con-
texts (RLPG-BM25), the performance improves a lot. All RLPG-based methods are better
than fixed prompt proposal, showing the value of generating example-specific prompts using
RLPG. However, both the learned variants of RLPG, i.e., RLPG-H and RLPG-R outper-
form the RLPG-BM25, highlighting the importance of learning PPC. See Appendix 8.D.1
and Appendix 8.D.7 for the performance of all methods across individual repositories. Note
that even though we consider identifier usage as a separate baseline, one could consider it as
one of the prompt proposals leading to further improved performance of RLPG.
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Despite our efforts of avoiding overlap, since the training data for Codex is not exactly
known, there might be a possibility that part of our Google Code data is part of the training
data for Codex. Even if there were an overlap, we want to point out that since Codex has
been trained with the default Codex context, during inference, it would be more beneficial
for it to use the default Codex context in the prompt (rather than the context from the
prompt proposals or any other context from other methods). This means that under this
scenario, our evaluation would be more generous to the Codex baseline, leading to results
more in favor of the Codex baseline than other methods we have used.

Variation with #attempts: Imagine a scenario where we have a human-in-the-loop
who has been given k attempts to prompt the LLM and then choose one of the k predictions.
We wanted to see how the performance of our framework varies with #attempts under this
setting. This corresponds to using k prompts generated with top-k prompt proposals (one
prompt per proposal) and marking success if any of the k prompts lead to success. The
left side of Figure 8.2 shows the variation of SR over the validation data with the value
of k. For RLPG, the top-k prompt proposals were chosen based on the decreasing order
of probabilities given by PPC. For the fixed prompt proposal, the top-k prompt proposals
were decided based on decreasing order of success rate of the individual prompt proposals
on the validation dataset. From the figure, we notice that as we increase the value of k, the
performance increases gradually at first and then saturates towards the oracle performance
(79.05% for val data). This behaviour is observed for both fixed prompt proposal as well as
RLPG. However, we see that for the same value of k, the success rate for RLPG is higher
indicating that PPC learns a useful ranking of the prompt proposal contexts that can scale
well with the #attempts.

Performance based on Prompt Proposals: The right side of Figure 8.2 shows the
mean success rate of prompt sources, where success is counted only when the correspond-
ing prompt source is applicable. From the figure, we see that the current file is the most
important prompt source. Closely following are sibling files and similar name files. We see
that all prompt sources have non-zero chances of success, highlighting the usefulness of each
prompt source. See Appendix 8.D.2 for a similar breakdown based on prompt context type
and Appendix 8.E for analysis of sample cases that lead to success and failure for RLPG.

Table 8.4. Edit distance based performance evaluation.

Method Normalized Edit Distance(%) Rel. ↑(%)

Codex 30.73 -

RLPG-H 22.55 26.62
RLPG-R 23.00 25.14
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Edit Distance as a Metric: In addition to measuring string exact match, we also assess
the performance of RLPG using the character-level edit distance 4 as a metric. Table 8.4
reports the average character-level edit distance normalized by the total number of characters
in the target hole (lower is better). We see that both RLPG variants show significant relative
improvements over Codex with RLPG-H getting as high as 26.62% relative improvement.

Experiments with code-cushman-001: To investigate whether the improvements
achieved with RLPG are applicable to a different code model, we conducted experiments
on the code-cushman-001 model from OpenAI 5. This model supports a context length of
up to 2048 tokens, which is half the context length of code-davinci-001 and is expected to
be relatively smaller (see Appendix A.2 of Rajkumar et al., 2022).

For evaluating RLPG, we choose the prompt proposal contexts based on the predictions
from our trained RLPG models (trained on labels obtained from code-davinci-001). These
contexts are then used as prompts for code-cushman-001 in order to get the completions.
As shown in Table 8.5, on the test set, RLPG-H gets a relative improvement of 10.87%
and RLPG-R gets a relative improvement of 10.95% over using the prior context in the
file. These results suggest that RLPG has the potential to show improvements across differ-
ent code completion models. We expect that having RLPG models trained on labels from
code-cushman-001 would improve the results even further. However, in our opinion, the fact
that we can use a single RLPG model (trained on code-davinci-001) to get improvements
for two different code completion models (code-cushman-001 and code-davinci-001) is
quite interesting.

Table 8.5. Success Rate (SR) with code-cushman-001.

Method Success Rate(%) Rel. ↑(%)

code-cushman-001 58.40 -

RLPG-H 64.74 10.87
RLPG-R 64.79 10.95

8.4. Related Work
LLMs for Code: Recently, there has been a lot of work around large language models

of code. Decoder-only models correspond to generating code from left to right (Chen et al.,
2021; Austin et al., 2021; Wang & Komatsuzaki, 2021; Black et al., 2021; Xu et al., 2022a;
Fried et al., 2022). Encoder-only models use a masked language modeling objective (Feng

4https://pypi.org/project/editdistance/
5https://platform.openai.com/docs/models/codex
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et al., 2020; Guo et al., 2020; Kanade et al., 2020). We also have encoder-decoder mod-
els that generally use a bidirectional encoding of a context to decode a series of masked
tokens (Yue Wang, 2021; Li et al., 2022).

Repo-Level Info: Hellendoorn & Devanbu (2017b) propose a nested n-gram model
that utilizes a locality-based cache where the locality consists of all directories from the
root of the project (inclusive of the current file). Zhang et al. (2021) uses the parent class
to generate the comments for the child class. Pashakhanloo et al. (2022b,a) convert the
repository into a relational database and propose a graph-walk-based mechanism for pruning
the unrelated context whereas Wang et al. (2021a) proposes a multi-relational graph neural
network that uses inter-class and intra-class contexts to obtain code summaries. Lyu et al.
(2021) incorporates the API-dependency graph in an LSTM-based Seq2Seq model to assist in
code generation whereas, Zhou et al. (2023a) trains a model to augment code documentation
to a natural language intent. Xu et al. (2022b) incorporates three types of structural locality
features while training the kNN-LM (Khandelwal et al., 2020). These features are binary
variables that correspond to the presence or absence of a similar hierarchy. The three levels
of hierarchy are (a) sibling file, (b) file in the same repo (c) no hierarchy. In contrast, we
have a much richer set of prompt proposals incorporating the semantics and structure of the
repository. Also, we assume black-box access to the model and generate a prompt for the
LLM without performing any finetuning of the LLM.

Prompt Generation: There have been promising works around prompt generation
techniques in NLP. Broadly, there are two categories of automatic prompt-generation tech-
niques. The first category corresponds to producing continuous/soft prompts where the
prompt is described in the latent space of a language model (Li & Liang, 2021; Qin &
Eisner, 2021; Bragg et al., 2021; Lester et al., 2021; Liu et al., 2021b). For example, Prefix-
Tuning (Li & Liang, 2021) adds a prefix to the LM that can be learned by finetuning on
examples from the downstream task. The second category produces discrete prompts where
the prompt is a text string that can be interpreted by a human (Shin et al., 2020; Gao et al.,
2021; Schick & Schütze, 2021). For example, Autoprompt (Shin et al., 2020) generates a
prompt using a fixed template consisting of trigger tokens. The trigger tokens are shared
across all inputs and determined by a gradient-guided search involving the LM. Our work
falls in the category of discrete prompt generation techniques as we produce a prompt con-
sisting of code tokens that can be easily interpreted by a human. However, in contrast to
prior works that use a set of fixed templates for all examples, we learn to produce prompts
conditioned on each example. Another important distinction is that we do not require access
to the weights of the LM. A concurrent work as ours, (Wang et al., 2022) studies the role
of prompt-tuning when compared to finetuning for code translation, defect localization, and
code summarization. However, their technique requires access to the weights of the LLM
and they perform experiments over models that are much smaller in scale than Codex. To
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the best of our knowledge, our work is the first to explore automatic prompt generation in
a black-box access setting in the domain of source code.

8.5. Discussion
We note that code-completion systems used in conjunction with LLM should be deployed

with caution (Chen et al., 2021). Blind trust in these systems may lead to potential negative
impact, as there might be cases where the generated code is insecure (Perry et al., 2022a) or
contains sensitive information. After the submission of this paper, LLMs with larger input
context lengths have been introduced, such as GPT-4 6 which supports 32k tokens. With this
expanded context length, one might consider including the entire content of the repository
in the prompt. However, in practice, software repositories are often much longer. In our
dataset (after deduplication), we observed that 70.22% of repositories contain more than
32k tokens. It is worth noting that apart from the current repository, there are other sources
of relevant context, such as API documentation, tutorials, or related repositories, that can aid
in code autocompletion. RLPG offers a mechanism to incorporate these additional sources
of context through new prompt proposals. Therefore, regardless of the context length of the
code-generating model, RLPG provides a valuable approach to determining which contexts
are relevant to include in the prompt. With the increased context length in GPT-4, we
anticipate less truncation of prompt proposal contexts, potentially leading to even greater
improvements with RLPG.

In conclusion, we present RLPG, a framework that learns to automatically generate
prompts conditioned on the example, without requiring access to the weights of the LLM.
RLPG utilizes the structure of the repository as well as the context from other files in the
repository using a set of easy-to-understand prompt proposals. In this work, we are taking
context from only one prompt proposal. For future work, we want to learn a model that
can automatically compose a prompt from multiple prompt proposals (see Appendix 8.D.4
for promising initial results). Other interesting directions include incorporating the user’s
feedback in RLPG and extending RLPG to multi-line code auto-completion.

6https://openai.com/product/gpt-4
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Appendix for the third article

8.A. Dataset Creation Details

8.A.1. Creation of Hole Completion Data

To collect the hole completion data, we scraped Google Code 7 for repositories tagged
with the language “Java”. Then we deduplicated repositories by searching for a matching
repository with the same name on GitHub. For those repositories with zero matching names
on GitHub, we downloaded the archive and extracted the source code (preserving the direc-
tory structure). Next, we tried to determine the licenses of all repositories by either looking
for a LICENSE file or matching with keywords "license", "copyright", "mit", etc. For repos
for which our process was able to come up with a known license, we selected the ones having
a permissive license, i.e., MIT, ApacheV2 and BSD. This was followed by removing files that
are exact duplicates of each other within a repo. One of the reasons we found this inter-
repository duplication may be because sometimes developers adopt lousy practices where
instead of declaring a package and importing functions, they simply copy-paste the desired
file into the current folder. The target holes coming from any of the duplicate files do not
form part of the hole completion dataset. However, these files might be used to contribute
to prompt proposal context for completing a target hole in a non-duplicate file. We felt
comfortable with this choice since we wouldn’t want to predict a target hole in a duplicate
file, but we can still use the context from the duplicate file to predict the hole in a file that is
not its duplicate (e.g. in a sibling file). For the remaining files, we took each line that is not
a blank line or a comment and chose the middle character as the hole position, i.e., all the
characters from the middle of the line to the end of the line form the target hole. To avoid
large repos having strong bias on our prompt proposal classifier, we capped the contribution
from each repo to be a maximum of 10000 holes. If the number of holes in the repo exceeds
10000, we randomly select 10000 holes. Tokenization was done using the suggested tokenizer
from OpenAI 8.

7https://code.google.com/archive/
8https://huggingface.co/docs/transformers/model_doc/gpt2#transformers.GPT2TokenizerFast



8.A.2. Creation of Data for Repo-Level Prompt Proposals

We used the tree-sitter API for Java 9 to get the parse-tree of an individual file in a
repo. To get information at a repo level, for each file in the repo, we stored the following
information:

(1) list of all class names in the file. This helped us to get the parent or child class file
corresponding to a given parent or child class.

(2) the file corresponding to each import statement.
(3) for each import statement in the file, the position in the file where the import is used.

This is used for ranking the files based on the heuristics mentioned in Table 8.6.
(4) list of sibling files
(5) list of similar name files. This was done by splitting the filenames based on either

camel-case or underscore. If the sub-parts of two files match, then they are said to
have similar names.

The above meta-data was calculated only once for each repo. The subsequent hole com-
pletions can use the same cached information. In practice, we can use a hash to store and
retrieve this info efficiently. For a prompt proposal, given the prompt source, we first obtain
a single file or ranked list of files (see Table 8.6) using the info in the parse tree in conjuga-
tion with the above repo-level meta-data. All the prompt proposal context type information
(MN, MNB, SL, I, TI, FD) can then be obtained by querying the parse tree of the selected
file.

8.B. Prompt Proposal Details

8.B.1. Ranking of files based on prompt source

In Table 8.6, we provide details of how we select files for a given prompt source. Depend-
ing on the prompt proposal, we get either a single file or a list of files ranked based on some
criteria. For example, if the prompt source is Import, we take all the import statements
used in the current file and identify the location in the current file where the corresponding
imports have been used. According to our heuristic, the closer the import usage to the hole
position, the more likely it is for the prompt proposal context coming from the corresponding
import file to be more relevant (to predict the target hole). We get a ranked list of import
files sorted based on increasing order of distance (i.e., number of lines ) between the import
usage and the hole position. We start by taking all of the prompt proposal contexts from
the first file in the ranked list and then keep iterating the ranked list until either the total
context length allocated to the prompt proposal gets exhausted or we reach the end of the
ranked list.
9https://github.com/tree-sitter/tree-sitter-java

94



Table 8.6. Selecting files for a prompt source

Prompt Source File Ranking

Current file with the target hole. Returns a single file.
Parent Class file that contains the parent class that occurs closest to the target

hole. Returns a single file.
Import files with the corresponding import usage ranked based on the prox-

imity to the hole. Returns a ranked list of files.
Sibling files with import usage common to the current file and the sibling

file ranked based on the proximity to the hole. The total number
of common imports between the current and the sibling file is used
as a tie-breaker. Returns a ranked list of files.

Similar Name files with import usage common to the current file and the similar
name file ranked based on the proximity to the hole. The total
number of common imports between the current and the similar
name file is used as a tie-breaker. Returns a ranked list of files.

Child Class files with import usage common to the current file and the child
file ranked based on the proximity to the hole. The total number
of common imports between the current and the child class file is
used as a tie-breaker. Returns a ranked list of files.

Import of Sibling import files ranked based on the frequency of usage in all the sibling
files. Returns a ranked list of files.

Import of Similar Name import file ranked on the basis of frequency of usage in all the
similar name files. Returns a ranked list of files.

Import of Parent Class import file ranked on the basis of frequency of usage in all the
parent class files. Returns a ranked list of files.

Import of Child Class import file ranked on the basis of frequency of usage in all the child
class files. Returns a ranked list of files.

8.B.2. Examples of Prompt Context Type

We provide examples of each of our prompt context types below:
(1) Post Lines (PL): For the example shown in Figure 1 of the main paper, post lines will

take all the lines after the line mg.InitializeToAssignment(CurrentAssignments())
till we reach the end of the file (AffinityPropagation.java).

(2) Identifiers (I): Identifiers are the names of variables used in the code. For
example, for the prompt proposal context taken from the imported file
shown in Figure 1 in the main paper (highlighted in violet), identifiers are
InitializeToAssignment(line 1), a (line 1), currentAssignment_ (line 2), a( line
2), clone(line 2), alreadyInitialized_ (line 3), justOneRound_(line 4).

(3) Type Identifiers (TI): Type Identifiers define the type of an identifier. For example, in
the code snippet class DPAffinityPropagation extends AffinityPropagation
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, [AffinityPropagation is labeled as a type identifier. Similarly in the snippet
DPAPParameters parameters_;, DPAPParameters is a type identifier.

(4) Field Declarations (FD): The variables of a class type are introduced by field
declarations. For example, double[][] mHijMujT_; and MessageValuePair[][]
sortedMHijMujTs_; are examples of field declarations.

(5) String Literals (SL): A string literal is the sequence of characters enclosed in
double-quotes. For example, in the code snippet, System.err.println("DPAP
load Warning: unknown parameter " + entries[0] + ", value = " +
entries[1]);, we have two string literals: (a) "DPAP load Warning: unknown
parameter " ; (b) ", value = " .

(6) Method Names (MN): For the example shown in Figure 1 of the main paper,
public void InitializeToAssignment(int[] a) is the method name prompt con-
text type.

(7) Method Names and Bodies (MNB): For the example shown in Figure 1 of the main
paper, the part highlighted in violet represents the method names and bodies.

8.B.3. Truncation Strategies for Prompt Proposal Context

If the prompt proposal context is greater than the context length allocated to it, then
we need to truncate the prompt proposal context. We followed the below two schemes for
truncating context:

• front: We truncate the context from the front. This is used for all prompt sources
except Parent Class and when we take PL from Current.
• back: We truncate the context from the back. This is used when the prompt source

is Parent Class and when we take prompt context types other than PL from Current.
The truncation strategies for each case were selected based on the results of a small validation
set. For the prompt source Current, except when the prompt context type is PL, we always
start by taking the code of the prompt context type from after the hole position. This makes
sense as the default Codex context will anyways contain code before the hole. Only if this
turns out to be blank, we will use the code of context type from before the hole.
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8.B.4. List of Prompt Proposals

Table 8.7. List of our proposed repo-level prompt proposals

Prompt Proposal ID Prompt Source Prompt Context Type

0, 1, 2, 3, 4 Current MN, I, TI, SL, FD
5, 6, 7 Current PL (taking 25%, 50% and 75% contribution to the total context length)

8, 9, 10, 11, 12, 13 Parent Class MNB, MN, I, TI, SL, FD
14, 15, 16, 17, 18, 19 Import MNB, MN, I, TI, SL, FD
20, 21, 22, 23, 24, 25 Sibling MNB, MN, I, TI, SL, FD
26, 27, 28, 29, 30, 31 Similar Name MNB, MN, I, TI, SL, FD
32, 33, 34, 35, 36, 37 Child Class MNB, MN, I, TI, SL, FD
38, 39, 40, 41, 42, 43 Import of Sibling MNB, MN, I, TI, SL, FD
44, 45, 46, 47, 48, 49 Import of Similar Name MNB, MN, I, TI, SL, FD
50, 51, 52, 53, 54, 55 Import of Parent Class MNB, MN, I, TI, SL, FD
56, 57, 58, 59, 60, 61 Import of Child Class MNB, MN, I, TI, SL, FD

62 Codex -

8.B.5. Other Prompt Proposal Variations

We experimented with other variations that include: (a) appending class names at the
beginning of the prompt proposal context, (b) using newline or space to join the prompt
proposal context and the default Codex context, (c) taking all or the top-k of the prompt
context types, (d) ordering of top-k.

• Context Separator: This defines how we join the prompt proposal context string
to the default Codex context string. We experimented with space and newline as
context separators.
• Prompt Proposal Context Formatting: We can format the prompt proposal

context before giving it to the Prompt Composer. We experimented with the follow-
ing options:

(1) class_name: append [class name of the file] at the beginning of the prompt
proposal context taken from each file that is part of the prompt source. For
example, if we are taking prompt proposal context from two import files f1

and f2, the prompt proposal context will be formatted as [class name of f1]
prompt proposal context from f1 + space + [class name of f2] prompt proposal
context from f2. We use this when the prompt proposal context types are MN,
I, TI, FD, and SL.

(2) class_method_name: we apply this only when the prompt proposal context
type is MNB. We append method names at the beginning of each of the corre-
sponding method bodies. We also append the prompt proposal context from a
file with the name of the class as described in the previous item.
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(3) comment: Adding in the prompt proposal context as a comment, i.e., formatting
it as/** prompt proposal context */. This wasn’t found to be much useful.

(4) none: passing the prompt proposal context as it is. We use this when the
prompt proposal context type is PL.

• Top-k Type: For each of the prompt proposal context types, except PL, we exper-
imented with taking the (a) first (b) last, and (c) all of the prompt proposal context
types, i.e., we can take first-10 identifiers. We found ’all’ to be the best among all.
• Top-k: We experiment with k values of (a) 10 (b) 20 and (c) all. We found ’all’ to

work best for all prompt context types.

8.C. Implementation Details

8.C.1. RLPG-H

We used Adam (Kingma & Ba, 2015a) optimizer with a learning rate of 3e-4 and batch
size of 64. We used CodeBERT (Feng et al., 2020) as our pre-trained model Fϕ to obtain
the representation of the hole window. The size of the representation (corresponding to the
hidden dimension of the [CLS] token) is 768. W 1 ∈ R512×768, b1 = 512,W 2 ∈ R63×512, b2 = 63.

8.C.2. RLPG-R

We used Adam (Kingma & Ba, 2015a) optimizer with a learning rate of 3e-4 and batch
size of 64. We used CodeBERT (Feng et al., 2020) as our pre-trained model Fϕ to obtain the
representation of the hole window and prompt proposal context. The size of the representa-
tion (corresponding to the hidden dimension of the [CLS] token) is 768. The multiheaded
attention (Vaswani et al., 2017b) is modeled as follows:

Qh = Fϕ(H
h), Kh

p = Fϕ(C
h
p ), V h

p = Fϕ(C
h
p )

Att(Qh, Kh
p , V

h
p ) = V h

p softmax
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p√
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)
MultiHead(Qh, Kh

p , V
h
p ) = WOconcat(head1, . . . headτ )

where headi = Att(WQ
i Qh,WK

i Kh
p ,W

V
i V h

p )

In the above equations, dk is the dimension of the key, WQ
i ,WK

i ,W V
i are the query, key

and value projection matrices, τ is the number of heads and WO is the linear projection
that combines the heads. The projection matrices WQ

i ∈ Rdq×dmodel , WK
i ∈ Rdk×dmodel ,

W V
i ∈ Rdv×dmodel , WO ∈ Rdmodel×τdv . For the multihead attention, we used dk = dq = dv = 32,

τ = 4 and dmodel = 768, Wr ∈ R63×768 and bp = 63. For each head, we perform scaled
dot-product attention. G module consists of a dropout (Srivastava et al., 2014) layer, a
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residual connection (He et al., 2016), a layernorm (Ba et al., 2016), followed by a sequence
of (a) dense layer of weights=2048 × 768, bias=768, (b) relu activation, (c) dense layer of
weights=768 × 2048, bias=2048, (d) dropout layer, (e) residual connection, (f) layer norm.
A dropout value of 0.25 was used while training. Our model resembles one layer of the
transformer encoder block (Vaswani et al., 2017b).

8.C.3. Baselines

Random baseline first selects a file randomly from the current repository followed by
selecting a random line within that file. We choose all the lines starting from that line
to the end line of the chosen file as context (excluding the hole window if the chosen file
is the current file). The nearest neighbor similarity is based on the dot product between
the representation of the hole window and the representation of the context, where we use
a pre-trained CodeBERT (Feng et al., 2020) model to obtain the representations. For the
Identifier Usage baseline, if the nearest identifier to the hole doesn’t return any usage window,
we proceed to the next nearest identifier. For faster computation and to avoid memory issues
when running on our hardware, for NN baselines, we collect 64 random neighbors and then
rank them based on the nearest neighbor distance. The BM25-based baselines use the
Okapi BM25 implementation with default parameters given by the pip package rank-bm25
0.2.2 10. For file-level BM25, if the file context exceeds the allocated context length, we
truncate from the back.

8.D. Additional Results

8.D.1. Hole-wise and Repo-wise results

Table 8.8 shows the performance of all methods when averaged across all holes (hole-wise)
and across individual repositories (repo-wise). Note that the latter metric is independent of
the size of the repository.

10https://pypi.org/project/rank-bm25/
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Table 8.8. Hole-wise and Repo-wise Success Rate (SR) of different methods on the test
data.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -

Oracle 79.63 35.58 80.24 32.31

Random 58.13 -1.02 58.95 -2.79
Random NN 58.98 0.43 60.04 -0.99

File-level BM25 63.14 7.51 64.28 6.00
Identifier Usage (Random) 64.93 10.55 67.83 11.85

Identifier Usage (NN) 64.91 10.52 67.94 12.03

Fixed Prompt Proposal 65.78 12.00 68.01 12.15
RLPG-BM25 66.41 13.07 68.15 12.39

RLPG-H 68.51 16.65 69.26 14.21
RLPG-R 67.80 15.44 69.28 14.26
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Fig. 8.3. Mean success rate on validation data based on prompt context type when they
are applicable.

8.D.2. Ablation on Performance based on Prompt Proposal

Figure 8.3 shows the mean success rate of prompt context types when success is counted
only for the cases when these prompt contexts are applicable. As can be seen from the
figure, post lines is the most useful prompt context type on average. The contribution from
other prompt context types though smaller than post lines is still significant highlighting the
importance of each prompt context type.
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Fig. 8.4. (Top) Normalized success rate of prompt sources when applicable, (Bottom)
Normalized success rate of prompt context types when applicable

Figure 8.4 shows the normalized success rates where the normalization is performed across
the prompt proposals. This helps us understand the relative performance of prompt proposal
sources and context types. The top part of the figure breaks down the performance based on
prompt sources and the bottom part breaks down based on prompt context types. One thing
to note from the plot of prompt context types is that when we consider relative performance,
post lines is no longer the most dominant context type. This is because post lines is tied to
only when the prompt source corresponds to the current file, thereby contributing to lower
numbers when compared to most of the other context types that are tied to all prompt
sources.
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8.D.3. Performance on non-immediate Post Lines

Table 8.9 shows the performance of post lines when starting from the fourth line after
the target hole line (i.e., skipping three lines after the target hole) as opposed to starting
from the line that immediately follows the target hole. This experiment helps us understand
the performance when we are interested in doing a much harder task of multi-line code
autocompletion, wherein the objective is to predict not just the blanked out portion in the
current line but also the next three lines which can correspond to completing a block of code
like a function body. From the table, we see that when starting from the fourth line, a slight
deterioration in performance occurs. This is expected because the farther away we move from
the target hole, the less relevant the post lines context would be. However, the performance
drop is not significant suggesting that post lines is still a very useful prompt context type
that can be used under the setting of multi-line code-autocompletion. Equivalently, we can
include this as one of the prompt proposals in our framework along with the current version
of post lines.

Table 8.9. Success Rate (SR) when taking different versions of post lines.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -
Post Lines (immediate line after the hole) 65.78 12.00 68.01 12.15

Post Lines (skipping three lines after the hole) 65.11 10.86 66.42 9.53

8.D.4. Composition of prompt proposals

Table 8.10 shows the performance of the two versions of RLPG when we compose the
prompt proposal context from l prompt proposals. We take the top-l prompt proposals
given by RLPG based on decreasing order of probability. To decide how much context
should be used for each prompt proposal, we divide the total context length in proportion to
the normalized probabilities of the top-l prompt proposals. As can be seen from the table,
even though PPC is not explicitly trained to perform composition (both the ground-truth
vector and the representation of prompt proposal context involve a single prompt proposal),
all the compositions lead to significant improvements over Codex. However, as expected the
best results correspond to taking context from a single prompt proposal (i.e., the training
setting). The drop in success rate with l = 2 and l = 5 is not that significant, which suggests
that explicitly training RLPG to learn to compose contexts from different prompt proposals
can lead to promising results and hence offers an interesting future direction.
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Table 8.10. Success Rate (SR) of different compositions of the prompt proposals on the
test set.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 58.73 - 60.64 -
RLPG-H (l = 1) 68.51 16.65 69.26 14.21
RLPG-R (l = 1) 67.80 15.44 69.28 14.26
RLPG-H (l = 2) 67.07 14.20 67.87 11.91
RLPG-R (l = 2) 66.57 13.35 67.88 11.94
RLPG-H (l = 5) 66.60 13.40 67.91 11.98
RLPG-R (l = 5) 65.78 12.01 67.69 11.62
RLPG-H (l = 10) 65.53 11.58 67.24 10.88
RLPG-R (l = 10) 63.59 8.27 65.98 8.79

8.D.5. Effect of Context Length

To understand the effect of context length on the performance of our prompt proposals, we
took half of the context length available for a prompt in Codex and observed the performance
of the oracle and fixed prompt proposal. As before, we saw that an oracle constructed from
our prompt proposals shows remarkable improvement over Codex highlighting the value of
our prompt proposals (see Table 8.11). However, when compared to a larger context length,
the relative gains are smaller. This is expected as a smaller context length means that the
relevant context coming from a prompt proposal needs to be truncated to make it fit inside
the prompt, thereby leading to loss of information.

Table 8.11. Success Rate (SR) of Codex and oracle over the test set when the total
context length = 2048.

Method Success Rate(%)
(hole-wise)

Rel. ↑(%)
(hole-wise)

Success Rate(%)
(repo-wise)

Rel. ↑(%)
(repo-wise)

Codex (Chen et al., 2021) 57.77 - 58.90 -
Oracle 61.90 7.15 67.18 14.07

8.D.6. Effect of Truncation

We calculated the percentage of times the context included in the prompt gets truncated.
In Table 8.12, the second, third, fourth, and fifth columns represent the percentage trunca-
tion with the default codex context, the prompt proposal context, with either of them and
with both of them, respectively. The truncation numbers suggest that a code completion
model that allows a longer context length can be useful. We do not explicitly encourage
the syntactic correctness of the included code snippet. Since the context length is limited,
it is quite possible that the included context in the prompt is not syntactically correct as a
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whole. However, on plotting the repository-wise numbers, we didn’t observe any particular
correlation between the amount of truncation and performance. This makes us believe that
the content of the included context (whether it comes from a selected prompt proposal) is
what matters more rather than whether it is syntactically correct or not.

Table 8.12. Percentage truncation when using different contexts in the prompt.

Method Default Codex
Context

Prompt Proposal
Context Either Both Success Rate

RLPG-H 26.95 30.95 39.22 18.68 68.51
RLPG-R 26.82 31.31 38.88 19.24 67.80

8.D.7. Performance on individual repositories

Table 8.13. Success Rate of different methods on training data

Repo name #Total Holes Oracle Codex Fixed prompt proposal RLPG-H RLPG-R

largemail 1653 75.38 55.11 62.73 63.94 63.28
ftpserverremoteadmin 7323 86.44 66.11 76.09 76.21 76.76

myt5lib 838 91.65 53.58 61.34 73.51 74.46
seamlets 4890 92.74 62.25 62.72 71.55 74.27
gloodb 10000 91.07 57.50 57.50 70.32 72.31
jjskit 9043 80.36 65.61 72.18 72.00 72.44

mobileexpensetracker 2298 75.94 57.88 67.28 66.84 66.97
gfsfa 10000 80.55 57.33 57.33 59.28 65.24

swe574-group3 2029 76.79 54.46 66.19 65.16 64.91
strudem-sicsa 6131 77.83 64.96 72.55 73.25 73.32

soap-dtc 1370 81.24 64.82 70.73 71.61 72.70
openprocesslogger 7191 81.06 62.19 71.77 72.22 72.62
tapestry-sesame 397 72.54 45.84 61.21 60.71 63.98

exogdx 735 84.76 63.81 75.51 75.92 76.60
designpatternjavapedro 1069 78.30 54.82 64.36 63.99 68.57

quidsee 3020 81.66 60.79 69.50 70.36 70.26
healpix-rangeset 4734 63.54 48.71 54.67 54.94 55.07

sol-agent-platform 10000 73.76 58.22 65.72 65.65 65.94
rsbotownversion 10000 75.23 57.89 65.58 66.22 66.31
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Table 8.14. Success Rate of different methods on validation data

Repo name #Total Holes Oracle Codex Fixed prompt proposal RLPG-H RLPG-R

tyrond 721 83.91 60.33 71.15 71.57 72.68
math-mech-eshop 2225 83.46 62.20 72.76 73.53 73.17

infinispan-storage-service 373 82.31 71.85 78.55 76.94 77.75
teammates-shakthi 7665 82.02 63.74 72.38 72.47 72.46

javasummerframework 10000 79.27 55.92 65.30 65.74 65.55
tinwiki 10000 73.67 69.27 69.27 69.12 69.58
jloogle 3145 84.55 73.16 77.87 77.17 77.36

jcontenedor 5464 81.26 58.99 67.77 67.95 68.32
sohocms 772 76.68 57.90 67.10 67.49 67.62

affinity_propagation_java 1466 79.54 59.14 70.33 70.26 70.26
jata4test 1921 71.06 44.09 54.92 55.91 57.47
swinagile 2595 79.69 63.01 72.29 72.49 72.68

navigablep2p 1322 75.72 59.76 65.43 65.13 65.28
springlime 879 83.50 62.34 74.18 74.86 74.40

Table 8.15. Success Rate of different methods on test data

Repo
Name

#Total
Holes Oracle Codex Fixed

PP RLPG-H RLPG-R Random Random
NN

Iden Usage
(Random)

Iden Usage
(NN)

File-Level
BM25

RLPG-
BM25

dovetaildb 10000 76.89 57.12 66.45 66.06 66.25 57.45 57.58 61.39 60.77 59.39 66.09
project-pt-diaoc 10000 82.01 52.67 52.81 65.08 61.25 51.58 52.93 55.54 56.21 57.04 58.29

realtimegc 2513 77.64 57.58 67.01 67.85 68.48 57.78 58.89 63.51 63.99 61.84 66.69
fswuniceubtemplates 2070 77.44 55.7 58.89 66.81 65.8 55.22 55.89 65.7 66.43 59.28 66.71

qwikioffice-java 1138 76.45 70.21 70.21 69.86 70.56 46.13 48.15 60.37 62.92 64.41 58.17
glperaudsimon 1766 78.65 53.57 62.51 62.4 61.66 55.66 57.76 69.42 68.4 69.14 61.55
xiaonei-java-ap 839 73.42 57.57 62.1 62.69 63.29 57.09 57.21 71.28 72.35 63.77 63.29

ircrpgbot 6591 83.67 69.67 77.24 76.71 76.65 69.55 70.54 74.68 74.43 69.32 75.75
robotsimulator2009w 7514 75.63 56.28 67.55 67.53 67.55 56.4 56.18 64.61 64.71 62.96 66.12

gwt-plugindetect 73 84.93 60.27 68.49 65.75 68.49 58.9 57.53 63.01 63.01 50.68 75.34
apiitfriends 1385 85.05 65.05 74.8 75.67 75.31 65.7 68.59 70.25 70.11 66.93 73.57
wicketbits 754 83.02 59.81 72.94 72.81 73.08 60.21 61.94 81.96 79.31 84.48 73.47
hucourses 590 84.41 70.68 77.46 77.63 77.97 70 72.2 70.68 72.54 53.39 75.08

xfuze 3055 84.09 62.82 73.62 72.73 73.62 63.67 65.17 77.25 75.97 77.32 74.01

Table 8.13, Table 8.14 and Table 8.15 present the success rates of different methods over
individual repositories in the training, validation and test splits, respectively. The repo-wise
averages in Table 2 in the main paper were calculated by taking the average of numbers
corresponding to each column. The hole-wise averages correspond to multiplying the repo-
wise numbers of each method by the total holes in the repo to get the total number of
successful holes by that method for that repo. We then add the total number of successful
holes across repos and divide it by the total number of holes in the entire data split to get
the hole-wise averages.

8.E. Analysis of Sample Cases
In Figure 8.1, RLPG selects the prompt proposal that corresponds to taking method

names and bodies from the imported file (i.e. MaximizingGibbsSampler.java). Note that
mg. before the hole position indicates that a method used in the imported file is likely to
be invoked. In this case, the prompt proposal context (highlighted in violet) contains the
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method name InitializeToAssignment(part of target hole). This in conjunction with the
default Codex context which contains the method CurrentAssignments()(part of target
hole) leads to generation of a successful prompt. On the other hand, the prompt created
from the default Codex context fails to predict the target hole in this case. In general, we
observed that in the absence of a strong signal, Codex has a tendency to give preference
to natural language comments occurring before the hole position, e.g. naming the method
based on the comment. This in certain cases might hurt. We provide insatnces of positive
and negative samples cases for RLPG below:

8.E.1. Positive Cases

We provide some examples of cases where RLPG led to the correct prediction and Codex
failed.

(1) Cases where part of the target hole is found exactly in the prompt proposal context.
• RLPG = Propagation(int numVars) vs Codex = Propagation()
• RLPG = tersFromFile(String filename) { vs Codex = ters(String
filename) {
• RLPG = als("dampingFactor")) { vs Codex = als("numVars")) {
• RLPG = ] + ", value = " + entries[1]); vs Codex = ]);
• RLPG = stem.exit(1); vs Codex = stem.err.println("DPAP load error:
" + ex.get

(2) Cases where Codex takes strong hint from the preceding natural language comment,
thereby producing incorrect predictions.
• RLPG = d PassMessages() vs Codex = d DoOneRoundOfMessagePassing()
• RLPG = teger> CurrentExemplars() { vs Codex = teger> ChooseExemplars()
{
• RLPG = ring FileName() { vs Codex = ring GetAlgorithmFilename() {

8.E.2. Negative Cases

In certain cases, extra information from prompt proposal-context might lead to confusion
and produce incorrect predictions.

• RLPG = an hasConverged_; vs Codex = an converged_;
• RLPG = _[i][j] = -Double.MAX_VALUE; vs Codex = _[i][j] = 0;
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Chapter 9

Prologue to the fourth article

9.1. Article Details
RepoFusion: Training Code Models to Understand Your Repository. Disha

Shrivastava, Denis Kocetkov, Harm de Vries, Dzmitry Bahdanau, Torsten Scholak. This
article (Shrivastava et al., 2023) is under review at the Neural Information Processing
Systems (NeurIPS) 2023 .

Personal Contribution The project began with discussions between Disha Shrivastava,
Dzmitry Bahdanau and Torsten Scholak preceding Disha Shrivastava’s part-time internship
at ServiceNow Research. Having worked with and seen the promise of repository-level con-
text (Shrivastava et al., 2022), Disha Shrivastava was looking into ways of training with
repository contexts from multiple sources. Dzmitry Bahdanau suggested that Fusion-in-
Decoder (Izacard & Grave, 2021) can be an effective strategy to do so. Further refinement of
this idea through subsequent discussions, led to the development of RepoFusion. Denis Ko-
cetkov contributed to the initial filtration process of The Stack (Kocetkov et al., 2022) dataset
and assisted in scripting and conducting experiments for the finetuning of the CodeT5 model,
which was used to initialize RepoFusion. Disha Shrivastava was responsible for formulating
the RepoFusion framework, writing the code as well as running experiments for obtaining
repository contexts from The Stack, data pipeline, training and evaluation of RepoFusion as
well as writing the paper. Harm de Vries, Dzmitry Bahdanau, and Torsten Scholak advised
on the project and offered constructive critique during the drafting and revision phases of
the paper.

9.2. Context
Despite the huge success of LLMs in coding assistants like GitHub Copilot 1, these models

struggle to understand the context present in the repository (e.g., imports, parent classes,

1https://github.com/features/copilot/



files with similar names, etc.), thereby producing inaccurate code completions. This effect
is more pronounced when using these assistants for repositories that the model has not seen
during training, such as proprietary software or work-in-progress code projects. In this work,
we build upon the concept of utilizing repository context during inference from our previous
work Shrivastava et al. (2022) and propose RepoFusion, a framework to train models to
incorporate relevant repository contexts from multiple sources. In terms of the broader theme
of the thesis (see Section 1.1), RepoFusion serves as the Predict module that provides an
effective way to combine relevant support context Z from diverse code snippets taken from
the repository thereby helping the model to generate a more accurate and context-aware
prediction for the current line (target Y ). Our most successful model uses context coming
from the prompt proposals used in our prior work (see Chapter 8). In contrast to our prior
work, where the Enhance module - represented by RLPG - selects a single prompt proposal,
RepoFusion learns to combine relevant context from multiple prompt proposals. Therefore,
RepoFusion can also be viewed as carrying out the operations of both the Enhance and
Predict modules. The subsequent chapter (Chapter 10) discusses this work in detail.

9.3. Contributions
In this work, we propose RepoFusion, a framework that helps code models to make better

predictions by learning to combine relevant contextual cues from the repository. Experiments
on single-line code completion show that our models trained with repository context signif-
icantly outperform much larger code models as CodeGen-16B-multi (∼ 73× larger) and
closely match the performance of the ∼ 70× larger StarCoderBase model that was trained
with the Fill-in-the-Middle objective. We create and release Stack-Repo, a dataset of 200
Java repositories with permissive licenses and near-deduplicated files that are augmented
with three types of repository contexts. In addition, we open-sourced the code and trained
models for the work to facilitate future research in this direction.

9.4. Research Impact
This work is a novel and compelling demonstration of the gains that training with repos-

itory context can bring even with a significantly smaller model. One of the crucial findings
of our work is that leveraging information from diverse sources within a repository is key for
improved performance. This opens up avenues for extending our work to incorporate sources
of relevant context other than the current repository such as tutorials, API documentation,
and other related repositories within the organization.
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Chapter 10

RepoFusion: Training Code Models to
Understand Your Repository

10.1. Introduction
Large Language Models (LLMs) of code (Svyatkovskiy et al., 2020; Chen et al., 2021;

Fried et al., 2022; Wang et al., 2021b; Nijkamp et al., 2023b; Li et al., 2022; Allal et al., 2023)
have gained significant popularity. The demand for these models has further increased with
their integration into code assistants like GitHub Copilot1 and TabNine2, and their popularity
is anticipated to grow further as more developer-assistance products are developed around
them.

Despite their remarkable capabilities, LLMs of code often struggle to generalize effectively
in unforeseen or unpredictable situations, resulting in undesirable predictions. Instances of
such scenarios include code that uses private APIs or proprietary software, work-in-progress
code, and any other context that the model has not seen while training. To address these
limitations, one possible approach is to enhance the predictions of these models by incorpo-
rating the wider context available in the repository. Leveraging the structure and context of
the repository can take into consideration dependencies between files, such as imports and
parent classes, and provide valuable insights into coding patterns that may be specific to
the organization or user. Recent works (Shrivastava et al., 2022; Zhang et al., 2023; Ding
et al., 2022) have shown promising results in utilizing repository-level context in conjunction
with LLMs of code. It was also shown in Shrivastava et al. (2022) that without special-
ized training, it is challenging to integrate multiple relevant contexts from the repository.
Building upon these findings we propose RepoFusion, a training framework for learning to
combine multiple relevant contexts from the repository in order to generate more accurate
and context-aware code completions. In this work, we focus on the task of single-line code

1https://github.com/features/copilot/
2https://www.tabnine.com/



Fig. 10.1. Figure explaining the idea of RepoFusion. Given multiple relevant
contexts from the repository (Repo Contexts), RepoFusion appends the Surrounding

Context (highlighted in gray) to each repo context, encodes them separately, and combines
them to produce a prediction of the target hole.

completion (Hellendoorn & Devanbu, 2017b; Shrivastava et al., 2020) which simulates real-
world scenarios where users are editing existing files in an IDE. With reference to Figure 10.1,
this means that we have to predict the missing section, referred to as the target hole (high-
lighted in green), starting from the cursor’s position until the end of the line. We see that
the completion of this target hole will benefit from context not just in the current file (the
variable name token), but also from other files in the repository. Specifically, the context
from the imported file Account.java provides insight into the usage of the getTier method,
while the sibling file Subscription.java offers guidance on the usage of Auth.user("bearer",
with the definition of Auth found in the imported file Auth.java. Given these relevant code
snippets from across the repository which we call Repo Contexts (RCs), RepoFusion uses the
Fusion-in-Decoder (Izacard & Grave, 2021) architecture to combine these. Specifically, each
repo context is appended with the surrounding context i.e., a window around the target hole
excluding the target hole (highlighted in gray) and encoded separately. A decoder jointly
attends to the concatenated encoded representations to produce a prediction for the target
hole (highlighted in red). The key contributions of our paper can be listed as follows:

• We propose RepoFusion, a framework that helps code models to make better predic-
tions by learning to combine relevant contextual cues from the repository.
• Through extensive experiments we establish that RepoFusion, a 220M parameter

model, significantly outperforms several larger models trained on the next-token pre-
diction objective such as CodeGen-16B (Nijkamp et al., 2023b). Furthermore, despite
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being approximately 70 times smaller in size, our model closely matches the perfor-
mance of StarCoderBase (Li et al., 2023), a 15.5B parameter LLM trained with the
Fill-in-the-Middle (Bavarian et al., 2022) objective.
• We conduct thorough ablation studies to gain insights into the key factors influencing

RepoFusion, such as the nature of repository contexts, their lengths, the number of
repository contexts, and other training configurations. One of the crucial findings
is that leveraging information from diverse sources within a repository is the key to
RepoFusion’s effectiveness.
• We create and release Stack-Repo3, a dataset of 200 Java repositories with permissive

licenses and near-deduplicated files that are augmented with three types of reposi-
tory contexts. Our released resources can be found at: https://huggingface.co/
RepoFusion.

10.2. Training with Repository Context
In this section, we briefly describe Fusion-in-Decoder (Izacard & Grave, 2021), the repos-

itory contexts we used, and the details of our RepoFusion framework.

10.2.1. Fusion-in-Decoder

Fusion-in-Decoder (Izacard & Grave, 2021) (FiD) is a method to train a language model
to combine information coming from multiple sources. In the original work, FiD was used for
open-domain question answering. In the FiD approach to question answering, a sequence-
to-sequence model takes support passages concatenated with the question as inputs and
produces an answer as the output. Each support passage is appended to the question and
encoded independently by the encoder. The encoded representations are then concatenated
and fed to the decoder which jointly attends to them to produce the answer. In this work,
we adapt FiD for the setting of code completion.

10.2.2. Repository Contexts

In this work, we consider different ways of retrieving relevant code snippets from across
the repository, i.e., repo contexts. Our most successful repo contexts are obtained by fol-
lowing the approach proposed by Shrivastava et al. (2022). Motivated by the syntax and
semantics of programming languages as well as the common coding patterns, Shrivastava
et al. (2022) proposed a set of repo-level prompt proposals that leverage the structure and
the relevant context in files across the repository. A prompt proposal (PP) is a function that
takes in the target hole’s location and the associated repository as input and returns a string
called Prompt Proposal Context (PPC) as output. The prompt proposal context is created
3https://huggingface.co/datasets/RepoFusion/Stack-Repo
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by extracting a particular type of context (prompt context type) from a particular category
of related source files (prompt source). Examples of prompt sources are the current file, files
that are imported into the current file, files that have a similar name as the current file, etc.
Examples of prompt context types are lines following the target hole, method names and
bodies, identifiers, string literals, etc. Combining these prompt sources and prompt context
types gives us a total of 63 prompt proposals (see Appendix B.4 of Shrivastava et al. (2022)
for details). It should be noted that the context from the beginning of the current file up to
the position of the hole, as well as the context following the target hole within the current
file are also types of prompt proposal contexts. We will refer to these as the prior PPC (or
just prior) and the post PPC (or just post), respectively in the remainder of the paper. Note
that depending on the target hole, some prompt proposal contexts might be empty (e.g. if
the target hole is towards the very beginning of the file, there might not be any import
statements from the current file to get context from).

Repo-level prompt proposals can be thought of as a deterministic retrieval mechanism
that returns the relevant code snippets from the repository. We also consider two other
mechanisms for retrieving repository-level context (see Appendix 10.B.3 for implementation
details): (a) BM25: The context from each file in the repository is scored using BM25-
based (Jones et al., 2000) similarity with the surrounding context, and (b) RandomNN
(also used in Shrivastava et al. (2022)): From a list of randomly selected chunks from the
repository, we select the top-k based on the similarity of the embedded chunks with the
embedded surrounding context in the representation space. The PPC along with BM25 and
RandomNN gives us three types of repo contexts.

10.2.3. RepoFusion

The core idea of RepoFusion is to train a code model to be aware of the context in the
repository such that it helps in generating an accurate prediction of the target hole. Given a
set of repo contexts, RepoFusion learns to combine the relevant parts of these contexts using
the FiD approach as described in Section 10.2.1. The surrounding context is concatenated
with each repo context and then encoded independently (see Figure 10.1, bottom). Note that
for our purpose, since we want the code model to complete the target hole, we append the
surrounding context toward the end of the repo context. This is different from the original
work (Izacard & Grave, 2021), where the question (analogous to the surrounding context in
our setting) is appended at the beginning of each passage (analogous to the repo context in
our setting). RepoFusion uses N repo contexts of length l tokens each. Since the number
and exact length of the prompt proposal contexts varies depending on the target hole, there
can be different ways to map the PPCs to RCs. We experimented with four strategies for
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Fig. 10.2. Different strategies employed for producing repo contexts (RCs) from prompt
proposal contexts (PPCs): (a) T-rank: we truncate the i-th ranked PPC to yield the i-th

RC. (b) T-rand: we position the truncated i-th PPC at a random position j in
RepoFusion’s sequences of RCs. (c) NT-Rank: each PPC yields as many RCs as

necessary to exhaust all of its tokens without truncation. (d) NT-Prior-Last: we reserve
the last r RCs for the Prior PPC and fill the rest RCs as in NT-Rank.

producing and ordering the RCs based on PPCs that express different aspects of the mapping
(see Figure 10.2). We mention the strategies along with the motivation for each below.

(1) Truncated-Ranked (T-Rank): In this setting, one prompt proposal context yields
one repo context. We truncate each prompt proposal context (i.e., take only the first
l tokens) to form the respective repo context and discard the rest. The repo contexts
are ordered based on the ranking of the prompt proposals 4 on the validation split of
the Google Code archives dataset of Shrivastava et al. (2022). Given that our work
and Shrivastava et al. (2022) both target Java, it seemed reasonable to us to directly
use this ordering.

(2) Truncated-Random (T-Rand): Same as T-rank except that the repo contexts
are ordered randomly. This helps us understand the role of the specific ranking of
PPs from Shrivastava et al. (2022).

(3) Not Truncated-Ranked (NT-Rank): The prompt proposals are ranked based on
the same order as in T-Rank. Unlike T-rank, here we avoid the truncation of prompt
proposal contexts. Instead, we construct as many repo contexts from each prompt
proposal context as necessary, namely a PPC of length L will contribute k = ⌈(L/l)⌉

4https://github.com/shrivastavadisha/repo_level_prompt_generation/blob/main/get_info_from_hole_predictions.py
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RCs. We then proceed to the next in order prompt proposal and continue so until
we have selected N repo contexts. Unlike T-rank, this setting allows RepoFusion to
see the entirety of top-ranked prompt proposals at the cost of potentially ignoring
the lower-ranked ones.

(4) Not Truncated-Prior-Last (NT-Prior-Last): Same as NT-Rank except that the
prior PPC is always ordered at the end. Since the decoder attends to the concatenated
encoded representations of the repo contexts in the same order as it is presented
as inputs, this strategy helps us understand the role of continuing code generation
from the encoded representation of the prior PPC as the most recently attended
representation in the decoder. Note that depending on the value of N , it may be
necessary to remove certain chunks of top-ranked PPCs in order to accommodate the
prior PPC at the end.

Similar to Izacard & Grave (2021), we format each repo context with special tokens to
mark the beginning of the surrounding context and the repo context, as well as for the name
of the repo context (which is the same as the name of the prompt proposal). Please see the
Appendix 10.B for details on these tokens and other architectural details of RepoFusion.

10.3. Experiments and Results
In this section, we describe the process of creation of our dataset Stack-Repo and the

details of experiments. We then present the results of evaluating RepoFusion and other
models on the test set. This is followed by presenting the findings of extensive ablation studies
carried out on the validation set to gain deeper insights into the individual contributions of
each component in our framework.

10.3.1. Dataset Creation

In this work, we build upon a modified version of The Stack V1.1 (Kocetkov et al., 2022).
The modified version 5 consists of near-deduplicated code repositories with permissive licenses
from GitHub. For our experiments, we take only the Java subset (files with .java extension)
of this dataset.

Creation of Target Holes: For creating target holes needed for training and evaluating
RepoFusion, we choose a set of repositories randomly from the Java subset of the Stack and
divide them into training, validation, and test splits in the ratios 2:1:1. We only consider
repositories that contain at least 20 near-deduplicated files. For each repository, we choose
target holes from every code line (excluding comments in natural language and blanks)
in all the files. In order to tokenize a code line, we used common Java code delimiter

5https://huggingface.co/datasets/bigcode/the-stack-dedup
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tokens 6. We chose a random token within the line and the rest of the line starting from
that position till the end constitutes the target hole. By not selecting target holes based on
the tokenizer of a specific code model, we can ensure that the tokenizer remains unbiased
and does not implicitly favor any particular code model in our experiments. To avoid bias
from large repositories while training, we cap the maximum contribution of target holes from
a repository to 10000, i.e. if the total number of holes in the repository exceeds 10000, we
select 10000 holes randomly from the total holes. Please see Table 10.1 for the statistics of
Stack-Repo.

Table 10.1. Statistics of Stack-Repo

Feature Train Val Test

# Repositories 100 50 50
# Files 20310 11172 13202
# Holes 435890 220615 159822

Creation of Repo Contexts: For each target hole, we use the implementation 7 from
Shrivastava et al. (2022) to extract prompt proposal contexts. We take two lines above and
two lines below the target hole excluding the target hole as the surrounding context. For ob-
taining the embeddings for RandomNN repo contexts, we use pre-trained CodeBERT (Feng
et al., 2020). For constructing the BM25 repo contexts, we use the implementation from
the Rank-BM25 package 8. To improve efficiency, we store the repo contexts for each target
hole in advance. Note that even though our target hole and repo context creation strategies
have been inspired from Shrivastava et al. (2022), our dataset, Stack-Repo is significantly
bigger in size. Apart from code completion, Stack-Repo can serve as a benchmark for various
other code-related tasks involving repository context, such as bug repair and pull request
resolution. We plan to release it under the same license as The Stack (Kocetkov et al., 2022)
to support future research in these areas.

10.3.2. Experimental Details

Training of RepoFusion: We use the 220M parameter CodeT5-base (Wang et al.,
2021b) encoder-decoder model as our base code model for RepoFusion. We found that the
pre-trained CodeT5 model was not good at completing Java code (see Appendix 10.C.3 for
initial results). Therefore, to obtain a base model for RepoFusion training we finetuned
CodeT5-base with an input context length of 512 using the next-token prediction objective
on Java repositories from the dataset described in Section 10.3.1. Specifically, we used the

6[., (, ), [, ], , {, }, ,, :, ", ;]
7https://github.com/shrivastavadisha/repo_level_prompt_generation
8https://pypi.org/project/rank-bm25/
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repositories that were not included in Stack-Repo. For each file, we randomly sample ten
pivot points with the code context prior to the pivot location in the file serving as the input
to the encoder of CodeT5. The finetuned CodeT5-base model was then used to initialize
the training of RepoFusion. Based on the validation set performance, we found that for
RepoFusion, NT-Prior-Last with N = 32 and l = 768 works the best. We provide complete
details of training RepoFusion and finetuning CodeT5 in the Appendix 10.B.

Baselines: To benchmark the performance of RepoFusion, we conducted experiments
with several methods, with each model utilizing the recommended tokenizers specific to the
method and employing a maximum token generation limit of 128 per completion. To ensure
a thorough analysis, we have incorporated encoder-decoder models as well as decoder-only
models of different sizes, with varying context lengths and two different input context types.
We present the details of the methods below:

(1) CodeT5 (FT): In addition to the previously described finetuned (FT) version of
CodeT5-base, we also finetuned CodeT5-large (770M) with a context length of
512. Next, we assessed the performance of these models using input context lengths
of 2048 and 4096. The input context was constructed by either considering the prior
PPC (prior) alone or by concatenating equal lengths of the post PPC (post) and
prior.

(2) BigCode models: We experimented with two models released by BigCode 9. The
first model is SantaCoder (Allal et al., 2023), which is a 1.1B parameter model which
supports a maximum context length of 2048 tokens and the second is the recently
released StarCoderBase (Li et al., 2023) model which is a 15.5B parameter model
that can support up to 8192 tokens. Both of these models are trained with the Fill-
in-the-Middle (Bavarian et al., 2022) (FiM) objective on versions 1.1 and 1.2 of The
Stack (Kocetkov et al., 2022), respectively. These models were evaluated with both
the prior and post+prior contexts as inputs. For experiments with post+prior, we
used the FiM special tokens that were used while training these models. Since these
models have been trained specifically to see the post PPC as suffix, they help us
understand the role of training with multiple repo contexts in the way proposed by
RepoFusion.

(3) CodeGen (Nijkamp et al., 2023b): CodeGen is a decoder-only transformer-based
autoregressive model trained with the next-token prediction objective. It sup-
ports a maximum context length of 2048 tokens. We experimented with three pre-
trained variants of CodeGen, namely CodeGen-2B-multi, CodeGen-6B-multi,
and CodeGen-16B-multi. As before, we tried the scenarios where the input con-
text consists of the post + prior as well as when the input context consists of just the

9https://www.bigcode-project.org/
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prior. These models help us understand the performance of large pre-trained models
that are not trained with repo context.

It is important to note that when compared to our RepoFusion model, with the exception
of CodeT5-base (FT), all other models are many times larger in size and have been trained
on a significantly larger number of tokens. The rationale behind selecting these baselines is
to compare the performance of training smaller models with additional repository context
against training much larger models without incorporating repository context.

Evaluation Metric: We conduct an exact string match between the predicted hole
and the target hole, where the predicted hole is the string up to the occurrence of the first
newline in the completion. If an exact match is found, it is considered a success; otherwise,
it is deemed a failure. We measure the fraction of exact matches over the dataset and call it
Success Rate.

10.3.3. Results

Table 10.2 presents the hole completion success rate (along with standard error) in
percentage for different methods on our test set, where the standard error is an esti-
mate of the variability in the sample mean of the distribution of exact match. The top
two sections of the table display the evaluation results of the finetuned encoder-decoder
{CodeT5-base(FT), CodeT5-large(FT)} models and decoder-only {SantaCoder, CodeGen-
2B, CodeGen-6B, CodeGen-16B} models, respectively when provided with prior context as
input. The table’s next two sections present the results of evaluating these models when
given with post+prior context as input. In the final section of the table, we showcase the
evaluation results of RepoFusion using different effective input context lengths obtained by
varying the values of N and l.

Baseline Performance Improves with Model Size and the Addition of Context:
The performance of CodeT5 (FT) models improves as the model becomes bigger (CodeT5-
large vs CodeT5-base) and as the input context length increases (2048 vs 4096). We observe
a comparable pattern with decoder-only models, where there is a general enhancement in
performance as the models grow larger (with a slight indication of saturation) while main-
taining a fixed context length. Additionally, we note a substantial improvement in both
categories of models when provided with post + prior context as input, compared to their
respective performances with only the prior context. The SantaCoder model, specifically
trained for the FiM task, exhibits the most significant improvement.

RepoFusion is Effective: RepoFusion not only exhibits a substantial improvement
over its base model (CodeT5-base (FT)) but also surpasses other bigger models, even when
utilizing the same effective context length. Furthermore, RepoFusion achieves superior per-
formance compared to the significantly larger CodeGen-16B model, even when constrained to
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Table 10.2. Completion success rate on the test set for different methods.

Model Size
(#params)

Effective
context length

Context
type

Success Rate
(%)

CodeT5-base (FT) 0.22B 2048 prior 41.82 ± 0.12
CodeT5-base (FT) 0.22B 4096 prior 46.45 ± 0.12
CodeT5-large (FT) 0.77B 2048 prior 44.73 ± 0.12
CodeT5-large (FT) 0.77B 4096 prior 48.92 ± 0.12

SantaCoder 1.1B 2048 prior 39.51 ± 0.12
CodeGen 2B 2048 prior 49.45 ± 0.12
CodeGen 6B 2048 prior 49.19 ± 0.12
CodeGen 16B 2048 prior 50.20 ± 0.12

CodeT5-base (FT) 0.22B 2048 post+prior 48.89 ± 0.12
CodeT5-base (FT) 0.22B 4096 post+prior 49.97 ± 0.12
CodeT5-large (FT) 0.77B 2048 post+prior 51.72 ± 0.12
CodeT5-large (FT) 0.77B 4096 post+prior 52.43 ± 0.12

SantaCoder 1.1B 2048 post+prior 56.78 ± 0.12
CodeGen 2B 2048 post+prior 53.18 ± 0.12
CodeGen 6B 2048 post+prior 54.03 ± 0.12
CodeGen 16B 2048 post+prior 54.09 ± 0.12

RepoFusion (N = 4, l = 512) 0.22B 2048 NT-Prior-Last 65.96 ± 0.12
RepoFusion (N = 8, l = 512) 0.22B 4096 NT-Prior-Last 70.38 ± 0.11
RepoFusion (N = 32, l = 768) 0.22B 24576 NT-Prior-Last 77.32 ± 0.10

Table 10.3. Comparison with StarCoderBase on a test set subset.

Model Size
(#params)

Effective
context length

Context
type

Success Rate
(%)

StarCoderBase 15.5B 8192 prior 52.97 ± 0.45

StarCoderBase 15.5B 8192 post+prior 79.79 ± 0.36

RepoFusion (N = 16, l = 512) 0.22B 8192 NT-Prior-Last 73.67 ± 0.43
RepoFusion (N = 32, l = 2500) 0.22B 80000 NT-Prior-Last 78.33 ± 0.37

utilize fewer repository contexts to match the effective context length of CodeGen-16B. Fur-
thermore, when provided with additional repo contexts, RepoFusion demonstrates further
enhancements in performance.

We also compare RepoFusion with the recently released StarCoderBase (Li et al., 2023)
model. StarCoderBase is a 15.5B parameter model which is trained with about one tril-
lion tokens using a FiM objective employing a large input context length of 8192 tokens.
The results of this comparison using a random subset of 12500 holes from our test set ap-
pear in Table 10.3. Learning to read additional repository context allows RepoFusion to
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achieve success rate just 1.3% below the performance of the 70 times bigger state-of-the-art
StarCoderBase model.

Prompt Proposals Matter: The right side of Figure 10.3 illustrates the success rate
of RepoFusion using Random-NN, BM25, and PPC (refer to Section 10.2.2 for details) when
employing T-Rank and NT-Rank. Note that when evaluating Random-NN and BM25, we
employed corresponding RepoFusion models specifically trained to accept Random-NN and
BM25 contexts as inputs. The results show that using the repo context from PP (Shrivastava
et al., 2022) performs the best.

The NT-Prior-Last Strategy is Most Effective: Next, we compare performances
of the four different repo context production and ordering strategies that we introduced in
Section 10.2.3. The left side of Figure 10.3 illustrates the success rate for the four strategies
in two distinct settings: N = 32, l = 768 and N = 63, l = 512. We see that the ordered repo
contexts, specifically NT-Prior-Last, NT-Rank, and T-Rank perform better than random
ordering of repo contexts (T-Rand). Also, the improved performance of NT-versions when
compared to the T-versions, highlights the value of presenting complete context from top
prompt proposals, as opposed to displaying truncated contexts from more prompt proposals.

Fig. 10.3. Completion success rate with different approaches to producing repository
contexts (RCs). (Left) Impact of RC production and ordering strategies; (Right) Impact

of different RC retrieval methods.

Longer Repo Contexts are Better: In the top part of Figure 10.4, we plot the vari-
ation of success rate with different values of the repo context length l. For this experiment,
we used our best-performing model that was trained using NT-Prior-Last. The results in-
dicate an improvement in the performance with the size of each repo context. However, in
both cases (N = 32, N = 63), the performance reaches a saturation point as the value of l
increases.
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Fig. 10.4. Completion success rate as a function of (Left) the length of the individual
repo context l; (Middle) the number of repo contexts N ; (Right) the number of prompt

proposal contexts that were used to produce the N repo contexts.

Using More Repo Contexts is Better: To understand the role of multiple repo
contexts, we evaluated our best-performing model with different values of N . We see from
the middle part of Figure 10.4 that the performance of RepoFusion increases up to N = 63

when l = 512 and up to N = 32 with a longer length of repo context l = 768. After this,
increasing the value of N doesn’t lead to further improvements.

RepoFusion Benefits from Diverse Prompt Proposals: We additionally look at
the success rate as a function of the average number of different prompt proposal contexts
that produced the considered repo contexts for each number of repo contexts N . Note that
the number of PPCs is less than N because often one PPC yields multiple RCs. One can see
from the right part of Figure 10.4 that using many diverse PPCs was essential for getting
better performance with RepoFusion.

Finetuning the Base Model for Next Token Prediction is Important: Table 10.4
shows the results of evaluating RepoFusion when the corresponding model is trained by ini-
tializing with a pretrained CodeT5-base model versus initializing with a finetuned version.
We observe that while training with repo contexts enhances the performance of the base pre-
trained CodeT5 model (see Appendix 10.C.3 for the performance with pretrained CodeT5),
we see that in all cases, there are clear benefits of initializing the training with a model that
is finetuned for code completion.

Table 10.4. Completion success rate when initialized from a pretrained vs finetuned
model.

Pretrained Finetuned

T-Rand 54.67±0.50 66.53±0.47
T-Rank 59.57±0.49 72.78±0.45
NT-Rank 60.88±0.49 73.60±0.44
NT-Prior-Last 61.91±0.49 74.82±0.43
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10.4. Related Work
Information from Outside the Current File: In the context of source code, har-

nessing information beyond the current file has been found to be useful. Hellendoorn &
Devanbu (2017b) utilizes a nested n-gram model with a locality-based cache encompassing
all directories in the repository. To capture the structure of the repository, Pashakhanloo
et al. (2022b,a) convert it into a relational database and propose a graph-walk mechanism
whereas, Lyu et al. (2021) incorporates the API-dependency graph in its LSTM-based code
model. While training the kNN-LM (Khandelwal et al., 2020), Xu et al. (2022b) incorporates
three types of binary variables corresponding to the presence or absence of similar local and
global hierarchy. Zhang et al. (2021) leverages the parent class to generate comments for the
child class.

Repository-level Context for Inference in LLMs: Shrivastava et al. (2022) proposes
RLPG, a classifier that selects a prompt proposal based on the target hole and utilizes the
context from the chosen prompt proposal and prior context to prompt Codex (Chen et al.,
2021). Similarly, RepoCoder (Zhang et al., 2023) iteratively refines the prediction of the
target hole by injecting the previous predictions from the LLM in addition to the retrieved
context and prior context in the input prompt. In this work, we build upon the insights
gained by Shrivastava et al. (2022) regarding the utilization of repository-level information
during inference. We extend their findings to various configurations involving different code
language models (LLMs), considering a range of context lengths and sizes. Additionally,
our framework is trained with context from the repository and learns to effectively leverage
multiple relevant contexts sourced from the repository.

Retrieval-augmented Code Models: In recent studies (Zhou et al., 2023b; Parvez
et al., 2021; Lu et al., 2022; Zan et al., 2022; Ding et al., 2022; Borgeaud et al., 2022), attempts
have been made to enhance code LLMs by augmenting them with a sparse or dense retrieval
mechanism that returns API documentation or relevant code snippets from the repository.
The prompt proposals (Shrivastava et al., 2022) used in our work along with BM25 and
Random-NN share similarities with these retrieval mechanisms. Note that RepoFusion is
independent from the specific retrieval mechanisms employed and thus can seamlessly learn
to integrate multiple retrieved contexts, even from different retrieval mechanisms.

10.5. Discussion
Limitations RepoFusion has a limitation in terms of computation scalability as it ex-

hibits linear scaling with respect to the number of repo contexts N , leading to slower infer-
ence times for larger values of N . One possible solution to address this issue is to leverage
FiDO (de Jong et al., 2022), an optimization technique for FiD that enables faster inference.
Deploying RepoFusion, similar to any other code LLMs, requires careful consideration (Chen
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et al., 2021). The generated code can often be challenging to understand or debug, resulting
in developers spending significant time editing and revising the code (Vaithilingam et al.,
2022; Mozannar et al., 2022; Barke et al., 2023; Bird et al., 2022). There can be instances
where the generated code is less secure, posing potential risks (Pearce et al., 2021). Moreover,
excessive dependence on these models can result in situations where users overlook errors
in their code (Al Madi, 2022) or become overly self-assured, leading to the introduction of
mistakes (Perry et al., 2022b).

Conclusions and Future Work We propose RepoFusion, a framework that allows
training code models with multiple relevant contexts from the repository. By employing
RepoFusion in experiments focused on single-line code autocompletion, we highlight the no-
table enhancements in performance attained through training smaller models with repository
context, surpassing the results of training larger models without such context. RepoFusion,
in combination with the Stack-Repo dataset, opens up exciting avenues for future research
in the field of smaller retrieval-augmented LLMs for code. We believe our method can also
extend to other code-related tasks such as bug repair, the merging of pull requests, and
software documentation/tutorial writing.
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Appendix for the fourth article

10.A. Details on Stack-Repo
We have made our dataset available at the link: https://huggingface.co/datasets/

RepoFusion/Stack-Repo. The details of the license can be found in the Licensing Informa-
tion section of the page. Stack-Repo consists of 200 near-deduplicated Java repositories (see
Table 10.1 of the article for details). For each repository within a split (train, validation
and test), we provide all files arranged in the directory structure within the repository along
with three .json files that contain the PP, BM25 and RandomNN repo-contexts. One row
of the .json file corresponds to a target hole consisting of the location of the target hole,
the target hole as a string, the surrounding context as a string and a list of repo-contexts as
strings.

10.B. Implementation Details

10.B.1. Finetuning CodeT5

As described in Section 10.3.2 of the article, to serve as a better initialization of Repo-
Fusion (also served as a baseline) we finetuned a CodeT5-base model (220M parameters)
with an input context length of 512 tokens using the CodeT5 tokenizer. We used an Adam
optimizer with Decoupled Weight Decay Regularization (Loshchilov & Hutter, 2019) with
weight decay of 0.05 and a learning rate of 4e-05. In addition, we used a linear scheduler
with 100 warm-up steps, a dropout of 0.1, and gradient clipping with a max gradient norm
of 1.0. To serve as a baseline, we also finetuned a CodeT5-large model (770 M parameters)
with an input context length of 512. We used the same set of hyperparameters for this as
mentioned before except that we used a learning rate of 1e-4. The training was carried out
on 2 NVIDIA A100 GPUs with a memory of 80GB each and a batch size of 32 per GPU for
the CodeT5-base model. For CodeT5-large we used 4 A100 GPUs with memory of 80GB
each and a batch size of 12 per GPU. The evaluation run was carried out on a single 32GB
V100 GPU with a batch size of 32 for CodeT5-base and 48 for CodeT5-large.

https://huggingface.co/datasets/RepoFusion/Stack-Repo
https://huggingface.co/datasets/RepoFusion/Stack-Repo


10.B.2. Training RepoFusion

We use the 220M parameter CodeT5-base (Wang et al., 2021b) encoder-decoder model
as our base code model for RepoFusion. Our RepoFusion implementation was heavily built
on top of the code released by Shrivastava et al. (2022)10, as well as the code released by
Izacard & Grave (2021)11. The former was used to obtain repo contexts and the latter was
used for the FiD architecture.

Our best RepoFusion model was obtained by initializing the training from a finetuned
CodeT5-base checkpoint (see Section 10.B.1 for details). The repo contexts used the NT-
Prior-Last strategy (see Section 2.3 of the main paper for details) with 32 PP repo contexts
each of size 768 tokens (N = 32, l = 768). Similar to Izacard & Grave (2021), we format
each repo context with special tokens to mark the beginning of the surrounding context and
the repo context, as well as for the name of the repo context (which is the same as the name
of the PP taken from (Shrivastava et al., 2022)). We used hole_context: as prefix for the
surrounding context, rule_context: as a prefix for PP repo context, and rule_name: as
prefix for PP repo context name. We used Adam (Kingma & Ba, 2015c) optimizer with a
learning rate 1e-5 and a warmup linear scheduler with 5000 warmup steps. We used gradient
clipping with norm 1.0 and batch size of 1. Training was carried out on 2 NVIDIA A100
GPUs with a memory of 80GB each. Each evaluation run was carried out on a single 32GB
V100 GPU.

The BM25 and Random NN versions of RepoFusion were obtained by using the same
training hyperparameters as above and initialized from the same finetuned CodeT5 check-
point except that we found that a learning rate of 2.5e-5 and the setting N = 63, l = 512

works the best. As before, we used NT-Prior-Last strategy and a prefix only for the surround-
ing context and no prefixes for repo contexts. The RepoFusion model that was initialized
from a pretrained CodeT5-base version was obtained by using the same set of training hy-
perparameters as our best RepoFusion model but a learning rate of 1e-4 worked the best.

We release the RepoFusion models as well as the finetuned CodeT5 models at https:
//huggingface.co/RepoFusion/trained_checkpoints.

10.B.3. Retrieval Mechanisms

The BM25 repo contexts were obtained using the Okapi BM25 implementation with
default parameters given by the pip package rank-bm25 0.2.212. The BM25 scores are
calculated with the surrounding context being the query and full context from other files in

10https://github.com/shrivastavadisha/repo_level_prompt_generation (MIT License)
11https://github.com/facebookresearch/FiD (Creative Commons Attribution-NonCommercial 4.0 Interna-
tional Public License)
12https://pypi.org/project/rank-bm25/
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the repository being the search documents. Random NN repo contexts used the procedure
followed by Shrivastava et al. (2022) using CodeBERT (Feng et al., 2020) to obtain the
representations (See Appendix C.3 for details).

10.B.4. Other Baselines

We used the models available on Hugging Face hub, i.e. Codegen-2B-multi, CodeGen-6B-
multi, CodeGen-16B-multi, SantaCoder and StarCoder. We used special FIM tokens, i.e.,
<fim-prefix> for pre context, <fim-suffix> for post context and <fim-middle> to prompt
for completing the target hole. Each of these models used the recommended tokenizers and
completion length of 128 tokens.

10.C. Additional Results

10.C.1. Effect of Repetition

In order to further assess the significance of diverse repo contexts, we conducted an
analysis by repeating a PPC multiple times and using each repetition as a separate repo
context. One can see from the right side of Table 10.5 that repeating the context from a single
prompt proposal (prior, post, randomly chosen PP) has a negative impact on performance
compared to using different repo contexts from multiple prompt proposals.

Table 10.5. Completion success rate with repetiting different types of PPCs multiple
times.

Success Rate(%)

Rand 37.18±0.48
Prior 50.69±0.50
Post 54.64±0.50
NT-Rank 71.92±0.45

10.C.2. Appending Surrounding Context

Table 10.6 shows the performance of RepoFusion when we do not append the surround-
ing context to each repo context. We see that the performance drops significantly for all
strategies when compared to when the surrounding context is appended. It should be noted
that for these experiments, we used our best RepoFusion model that is trained to take the
concatenation of surrounding context and repo context as input. It is highly likely that a
RepoFusion model trained to not append the surrounding context would suffer from much
less performance drop.
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Table 10.6. Completion success rate with and without appending surrounding context.

without
Surrounding Context

with
Surrounding Context

T-Rand 13.89±0.35 66.53±0.47
T-Rank 25.06±0.43 72.78±0.45
NT-Rank 15.57±0.36 73.60±0.44
NT-Prior-Last 17.18±0.38 74.82±0.43

10.C.3. Performance of Pretrained CodeT5

Table 10.7 shows the performance on the test set when we directly use the pretrained
CodeT5-base and CodeT5-large models. For these experiments, we use the special token
<extra_id_0> to prompt the completion of the target hole. We see that the performance
of these pretrained models is quite low, thereby creating the need to finetune these models
on Java repositories on the next-token prediction objective. We see from the top section of
Table 2 in the main paper that the finetuning helps a lot.

Table 10.7. Completion success rate on the test set for pretrained CodeT5.

Model Size
(#params)

Effective
context length

Context
type

Success Rate
(%)

CodeT5-base 0.22B 512 prior 2.42 (0.04)
CodeT5-base 0.22B 2048 prior 3.94 (0.05)
CodeT5-large 0.77B 512 prior 4.56 (0.05)
CodeT5-large 0.77B 2048 prior 9.51 (0.07)
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Chapter 11

Conclusion

The motivating theme of this thesis was to improve the generalization performance of deep
learning models of code, especially when encountered with unseen context. To this end, we
proposed different techniques for identifying and retrieving relevant contextual cues from the
downstream task as well as different methods to effectively incorporate these contextual cues
into the models. We evaluated our approaches in two domains, single-line code completion
in an IDE and programming by examples, showing significant improvements in both these
domains.

11.1. Summary of Contributions
We summarize the contributions of each of the articles in this thesis along with their key

results and limitations.
• Learning to Combine Per-Example Solutions for Neural Program Syn-

thesis (Chapter 4): In Shrivastava et al. (2021), we propose Neural Per-Example
Program Synthesis (N-PEPS), a novel approach breaks the problem of finding a pro-
gram that solves all examples into two stages: (a) finding programs that solve a
single example (PE solutions) (b) making use of the program execution states to
aggregate the PE solutions such that it leads to a program that solves all examples.
For different evaluation settings, we show that when given the same time budget,
N-PEPS significantly improves the success rate over PCCoder (Zohar & Wolf, 2018)
and other ablation baselines. One of the limitations of this work is that our findings
are based on the straight-line DSL from Balog et al. (2016). Though this DSL draws
inspiration from real programming competition websites, it is relatively simple. A
promising future direction would be to extend the general idea of N-PEPS, which
involves breaking down a problem into simpler subproblems and combining their so-
lutions, to more complex DSLs that include loops and conditionals. It would also be
interesting to try out N-PEPS in connection with LLMs of code where we try to find



solutions to examples iteratively and then ask the LLM to combine the generated
solutions by inserting appropriate instructions in the prompt.
• On-the-Fly Adaptation of Source Code Models (Chapter 6): In Shrivastava

et al. (2020) we propose Targeted Support Set Adaptation (TSSA), an approach
which selects targeted information from the local context and then uses this to learn
adapted parameters, which can then be used for predicting a hole target in the cur-
rent file. Our experiments on a large-scale Java GitHub corpus reveal the following:
(a) Our formulation significantly outperforms all baselines including a comparable
form of dynamic evaluation, even with significantly fewer adaptation steps in many
cases; (b) Most of our performance benefits come from reducing the cross-entropy on
identifiers and literals. One of the limitations of this work is that updating model
parameters might become impractical in the context of large models as it might be
computationally expensive or not even an option because of black-box access to the
model parameters. Another limitation of this work is that it uses context only from
the current file. We address both these limitations in our next article (Shrivastava
et al., 2022) by incorporating relevant context from the entire repository directly into
the input prompt of the LLM, without the need to adapt the parameters of the LLM.
• Repository-Level Prompt Generation for Large Language Models of Code

(Chapter 8): In Shrivastava et al. (2022) we present Repository-Level Prompt Gener-
ator (RLPG), a framework that learns to automatically generate prompts conditioned
on the example, without requiring access to the weights of the LLM. RLPG utilizes
the structure of the repository as well as the context from other files in the reposi-
tory using a set of easy-to-understand prompt proposals. On the task of single-line
code-autocompletion, we show that an oracle constructed from our proposed prompt
proposals gives up to 36% relative improvement over Codex. Further, we show that
when we use our prompt proposal classifier to predict the best prompt proposal, we
can achieve up to 17% relative improvement over Codex, as well as improve over other
baselines. One of the limitations of this work is that it uses context from only one
prompt proposal. We address this limitation in our next article (Shrivastava et al.,
2023) where we combine multiple prompt proposals.
• RepoFusion: Training Code Models to Understand Your Repository

(Chapter 10): In Shrivastava et al. (2023) we propose RepoFusion, a framework
that allows training code models with multiple relevant contexts from the repository.
We highlight the notable enhancements in performance attained through training
smaller models with diverse repository contexts, surpassing the results of training
larger models without such context. In addition, we create and release Stack-Repo, a
dataset of 200 Java repositories with permissive licenses and near-deduplicated files
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that are augmented with three types of repository contexts. RepoFusion has a limita-
tion in terms of computation scalability as it exhibits linear scaling with respect to the
number of input repo contexts N , leading to slower inference times for larger values
of N . One possible solution to address this issue is to leverage FiDO (de Jong et al.,
2022), an optimization technique for Fusion-in-Decoder (Izacard & Grave, 2021) that
enables faster inference.

11.2. Broad Applicability of Our Framework
While this thesis focuses on specific realizations of our problem formulation outlined

in Section 1.1, it is important to note that the formulation itself is quite general and can
be readily extended to other settings. In the following discussion, we explore key design
considerations that play a vital role in ensuring the broad applicability of our problem
formulation.

• Size of Support Context: Since limited context can be given as input to the pre-
diction module Predict, determining the optimal number and length of each relevant
context becomes important. Potential ways of addressing these questions can be
to think of techniques to combine multiple relevant contexts (e.g. RepoFusion pro-
posed in our fourth article), retrieval-augmented methods that work with an external
memory (Wu et al., 2022; Borgeaud et al., 2021) and using an LLM with a large
context length (e.g. Anthropic’s Claude model1 offers 100k tokens context window).
However, using more relevant contexts with larger sizes may come with increased
inference costs. Striking a balance between context size and computational efficiency
remains an ongoing challenge in this domain.
• Capturing the Dependence between Enhance and Predict: The two stages

of context enhancement (Enhance) and prediction using the enhanced context
(Predict) in our general framework closely influence one another. Predict should
learn to effectively leverage the support context Z provided by Enhance. Similarly,
Enhance should make use of the feedback signal coming from Predict to guide the
selection of Z that is relevant to the task. The first article in our thesis incorporates
both these components by iteratively generating each line of the global program,
considering not only the per-example solutions and their execution states but also
the execution state of the previously generated line of the global program. In the
subsequent three articles, we primarily focus on the first component, but we can re-
fine the selection of Z by conditioning the respective Enhance modules on the code
predictions from the code completion module (Predict). This iterative retrieval of
support context from the repository, based on the code predictions, has been explored

1https://www.anthropic.com/index/100k-context-windows
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in recent work such as Zhang et al. (2023). This work can be viewed as an extension
of our third article to incorporate the second component.
Ideally, a joint learning approach for the Enhance and Predict modules would be
desirable. However, in practice, this can be challenging due to various factors such as
limited training data for end-to-end learning, difficulties in backpropagating gradients
with discrete variables (programs), and the computational complexity of training
large-scale code generation models (e.g. when Predict is an LLMs). In such scenarios,
training the modules for Enhance and Predict independently offers more flexibility.
Predict can leverage its pretraining on large amounts of data to possess general
knowledge, while Enhance can incorporate task-specific nuances using methods that
focus on incorporating domain-specific contextual cues. Additionally, Enhance can
be implemented with smaller-sized models compared to Predict.
• Performance-Latency Tradeoff: As large-scale deep learning models of code are

deployed in real-time applications, striking a balance between model performance
and low latency is a challenging task, as it requires optimizing both the quality of
predictions and the response time to ensure optimal user satisfaction. With regards
to our framework, this means optimizing for resource allocation within Enhance and
Predict during inference such that specific time and computational budgets are met.
• Generality of the Support Context: While there are benefits to approaches that

model Enhance based on the specificity of the task at hand, exploring methods to
automatically condition Enhance on a given task and generate relevant contextual
cues offers an exciting direction. A method like this would eliminate the need for
task-specific training of Enhance and provide a more flexible solution. One possible
way of thinking about this idea is to consider an instruction-tuned LLM that serves as
both Enhance and Predict. When prompted with instructions capturing the details
of the task, the LLM acts as Enhance and generates relevant contextual cues, which
are then fed back as input to the same LLM acting as Predict with instructions to
generate predictions for the target. However, designing an approach like this that
performs well across diverse tasks and is computationally efficient to train poses
significant challenges.
• Human-in-the-loop: Recent research has explored various aspects of the interac-

tions between code assistants and humans. These studies have highlighted certain
challenges, such as the generated code being difficult to understand or debug, leading
developers to spend considerable time editing and revising it (Vaithilingam et al.,
2022; Mozannar et al., 2022; Barke et al., 2023; Bird et al., 2022). Additionally,
concerns have been raised about the security of the generated code, as it may pose
potential risks (Pearce et al., 2021). Furthermore, excessive reliance on code assis-
tants can lead to users overlooking errors in their code (Al Madi, 2022) or introducing
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mistakes due to excessive confidence (Perry et al., 2022b). Our general framework,
which includes separate stages for context enhancement and prediction, has the poten-
tial to address some of these challenges. By incorporating more human-interpretable
contextual cues (e.g. prompt proposals in Chapter 8), users can have greater con-
trol over which cues are utilized during the prediction stage. One of the ways the
feedback from the user can be used is to select relevant contextual cues and itera-
tively refine predictions that can help mitigate issues like API hallucination, leading
to the generation of more secure and accurate code. We discuss this in more detail
in Section 11.3.2.

11.3. Going Forward
Below we list a couple of potential future research directions that serve as interesting

extensions to the ideas presented in the thesis.

11.3.1. Modeling the Code Ecosystem

Programming seldom happens in isolation. While writing code, software developers may
refer to external sources such as other projects within the organization, API documentation,
tutorials, or Q&A sites like StackOverflow. Software developers also rely on tools such as
an IDE where they write the code, a compiler for running unit test cases, a static analyzer
to fix errors, a version management software like GitHub and a linter for code formatting
to name a few. In addition, during the software development process, the developer might
interact with other people like peer software developers and architects, code reviewers, and
people who submit pull requests to incorporate new features or to report a bug.

To develop an effective code assistant, it is important for the model to understand the
complex programming workflow, which involves iterative changes to the program state and
collaboration among multiple individuals and tools. One way of doing this is to derive
relevant contextual cues from this entire code ecosystem. Examples of such contextual cues
include the commit history of the developer, compiler execution traces corresponding to
different stages of the program, details of errors faced by the developer before making a
final commit, bug reports, code reviews, and their resolutions. Recently, Google DeepMind
proposed a system called DIDACT2 that trains code models to incorporate some of the
aspects mentioned above.

11.3.2. Modeling User Interactions

The current evaluation of deep learning models for code often relies on metrics that may
not directly reflect user preferences. However, the increasing adoption of code models in
2https://ai.googleblog.com/2023/05/large-sequence-models-for-software.html
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consumer-facing products like GitHub Copilot and Bard, as well as the success of methods
like RLHF in ChatGPT, highlight the need to incorporate user interactions into the design
process of these models. For example, instead of using accuracy as a metric for code com-
pletion, the models can use metrics that are based on the actions of the users in response
to the generated completion, such as the acceptance rate of generated completions, the ex-
tent of user edits to predicted completions, and the time taken for users to resume coding
after viewing a completion. Directly asking users to rate the quality of predictions can be
a valuable approach, particularly in cases where it is challenging to devise objective metrics
to measure aspects like the generation of copyrighted or insecure code, or when the model
hallucinates an API usage. User feedback can be integrated into both the Enhance stage
for selecting relevant contextual cues and the Predict stage for refining prediction attributes
such as type, length, and display rate.

According to the findings of Barke et al. (2023), users interacting with GitHub Copilot
can be categorized into two modes: accelerated mode, where users already have a clear
direction and use Copilot to speed up their progress, and exploration mode, where users are
uncertain and rely on Copilot to explore different options. In accelerated mode, users tend
to accept suggestions quickly, while in exploration mode, users take more time to consider
suggestions. When the user is in the exploration phase, it would be beneficial to leverage
diverse contextual cues and display multiple predictions, allowing users to make informed
choices. On the other hand, in the accelerated phase it would make sense to continue with
the current strategy of selecting contextual cues and displaying concise suggestions that do
not break the user’s programming flow.

In Bhat et al. (2023), based on the insights of a user study on software tutorial authoring,
we propose a framework to model the different stages of the interaction of users with an LLM.
Through our analysis, we identify certain patterns in user behavior. One notable finding is
that as users interact with the LLM, they update their beliefs or mental models about
the capabilities of the model, which influences their future interactions. Leveraging the
history of user interactions with the model, we can assign weights to accepted responses and
iteratively adapt the Enhance and Predict stages based on this dynamic user mental model.
We also found that users often struggle with trusting the correctness and validity of the
generated content. One possible way to address this could be to rank contextual cues based
on their correctness and relevance, while also providing the source of the cues to enhance user
trust and allow for content verification. Furthermore, we observe that users have specific
preferences for the writing style of tutorials. To accommodate this, Enhance can derive
contextual cues from tutorials previously authored by the user, tutorials of a similar nature
(e.g., related to a specific technology), or tutorials targeted at the same level of audience
(e.g., basic vs. advanced). The ranked cues can then be combined using approaches like
RepoFusion (Chapter 10) to generate predictions that align with the user’s requirements.
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