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Motivation 
● Black-box access to LLMs. strongest models not publicly available, e.g. no access to model weights 

for Codex [1] that is deployed in GitHub Copilot[2].
● Incorporating the repository info: structure and context from other files.

● Example-specific discrete prompts: easy to plug-in human domain-knowledge, easy control.

Repo-Level Prompt Generator (RLPG)
● Learns to generate example-specific prompts without requiring access to the model weights.
● We propose a set of repo-level rules. A rule consists of (i) rule context location, (ii) rule context type, 

(iii) rule context ratio. e.g. get method names and bodies from first import file and fill 50% of the 
prompt space with this context (see below).

● Dataset: Java repositories from Google Code archives[3]
● Preprocessing: Deduplication, Parsing the file level AST and collating repo-level meta-info
● Methods: 

1. Codex: default Codex context.
2. Oracle: use the ground-truth vector that indicates success for each rule per example.
3. Fixed Rule: using a fixed rule for all examples.
4. Rule Classifier: Use a learned model to select the next rule conditioned on the 

example. Modelled as a multi-label binary classification task.
■ RLPG-H: use the hole context
■ RLPG-R: use the similarity of the hole context with the rule context.

● Prompt Generator: Concatenate the default Codex context with the selected rule’s context in the 
rule context ratio.

● An oracle constructed from our proposed rules gives 36% relative improvement over Codex.
● When we use our rule-classifier to select the best rule, we get 17% relative improvement over 

Codex. RLPG also better than fixed rule.
● Future Work: Composition of rules and  human-in-the-loop prompt generation. 
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Performance of the oracle

Performance of different methods averaged across all holes (hole-wise) and individual 
repositories (repo-wise).
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