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Introduction Experiments and Results

Motivation . Dataset: Java repositories from Google Code archives(3]
o Black-box access to LLMs. strongest models not publicly available, e.g. no access to model weights . Preprocessing: Deduplication, Parsing the file level AST and collating repo-level meta-info
for Codex [1] that is deployed in GitHub Copilot[2]. o Methods:
) Incorporating the repository info: structure and context from other files. 1 Codex: default Codex context. L
2. Oracle: use the ground-truth vector that indicates success for each rule per example.
[ Example-specific discrete prompts: easy to plug-in human domain-knowledge, easy control. 3. Fixed Rule: using a fixed rule for all examples.
4. Rule Classifier: Use a learned model to select the next rule conditioned on the
example. Modelled as a multi-label binary classification task.
Repo-Level Prompt Generator (RLPG) - RLPG-H: use the hole context
. Learns to generate example-specific prompts without requiring access to the model weights. " RLPG-R: use the similarity of the hole context with the rule context.
. We propose a set of repo-level rules. A rule consists of (i) rule context location, (i) rule context type,
. Prompt Generator: Concatenate the default Codex context with the selected rule’s context in the

(i) rule context ratio. e.g. get method names and bodies from first import file and fill 50% of the

prompt space with this context (see below). rule context ratio.
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Prompt Generator . An oracle constructed from our proposed rules gives 36% relative improvement over Codex.
- - N . When we use our rule-classifier to select the best rule, we get 17% relative improvement over
< phesempier ( Codex. RLPG also better than fixed rule.
RO e ey D . Future Work: Composition of rules and human-in-the-loop prompt generation.
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