ila Repository-Level Prompt Generation for Large Language Models of Code Universie rth

de Montréal

Go g|€ Research Disha Shrivastava*, Hugo Larochelle, Daniel Tarlow B McGill

Introduction Experiments and Results

Motivation . Dataset: Java repositories from Google Code archives(3]
o Black-box access to LLMs. strongest models not publicly available, e.g. no access to model weights . Preprocessing: Deduplication, Parsing the file level AST and collating repo-level meta-info
for Codex [1] that is deployed in GitHub Copilot[2]. o Methods:
) Incorporating the repository info: structure and context from other files. 1 Codex: default Codex context. L
2. Oracle: use the ground-truth vector that indicates success for each rule per example.
[Example-specific discrete prompts: easy to plug-in human domain-knowledge, easy control. 3. Fixed Rule: using a fixed rule for all examples.
4. Rule Classifier: Use a learned model to select the next rule conditioned on the
example. Modelled as a multi-label binary classification task.
Repo-Level Prompt Generator (RLPG) - RLPG-H: use the hole context
. Learns to generate example-specific prompts without requiring access to the model weights. " RLPG-R: use the similarity of the hole context with the rule context.
. We propose a set of repo-level rules. A rule consists of (i) rule context location, (i) rule context type,
. Prompt Generator: Concatenate the default Codex context with the selected rule’s context in the

(i) rule context ratio. e.g. get method names and bodies from first import file and fill 50% of the

prompt space with this context (see below). rule context ratio.

Success Rate(%) Rel. 1(%) Success Rate(%) Rel. 1(%)
hol) (ise) (ise)

Methodolog - olevhe) olent e a
: = Data SR SR Rel.
Codex (Chen et al., 2021) 58.73 - 60.64 - Split Codex(%) Oracle(%) over Codex(%)

Repository Current file : AffinityPropagation java ‘ T Oracle 79.63 3558 8024 3231 Train 59.78 80.29 34.31
™ - Fixed Rule (k = 1) 65.78 12.00 68.01 12.15 Val 62.10 79.05 27.28
- Siport sanpler MAKIRIEIngeIEbESREIeE |Predicted Hole| RLPG-H (k = 1) @a e 536 i Test 373 063 ey
GibbsParameters java public int[] CurrentAssignments() { e RLPG-R (k = 1) 67.80 15.44 69.28 14.26
SRR Performance of the oracle
public void Gatll a) (Performance of different methods averaged across all holes (hole-wise) and individual
atmityropagation ava) 1gnment_ = a.clone () P .
alreadyInitialized = true; Rule repositories (repo-wise).
................... Target Hole Sustoneround_ = trve: Context
i e T
public int[] Currenthssignments() {
i Y e Default a
j‘ R S, Conclusions
N
Maxinizi nguibbesanpl ar (mixvara)
=
Prompt
Prompt Generator . An oracle constructed from our proposed rules gives 36% relative improvement over Codex.
- - N . When we use our rule-classifier to select the best rule, we get 17% relative improvement over
< phesempier (Codex. RLPG also better than fixed rule.
RO e ey D . Future Work: Composition of rules and human-in-the-loop prompt generation.
Classifier alreadyInitialized_ = true;
SusconaRound. = crve;
References:

Repo-Level Prompt Generator : MaximizingGibbsSampler java

[1] Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards et al. “Evaluating large language models
" . o . trained on code." arXiv preprint arXiv:2107.03374 (2021).
‘Corresponding author: dishu.905@gmail.com [2] hitps:/github com/featuresicopilot/

[3] hitps://code.google.com/archive/

https://github.com/features/copilot/
https://code.google.com/archive/

