Repository-Level Prompt Generation for Large Language Models of Code

Disha Shrivastava*, Hugo Larochelle, Daniel Tarlow

Google Research

🐯 McGill

Introduction

Motivation

Mila

- Black-box access to LLMs. strongest models not publicly available, e.g. no access to model weights for Codex [1] that is deployed in GitHub Copilot[2].
- Incorporating the repository info: structure and context from other files.
- Example-specific discrete prompts: easy to plug-in human domain-knowledge, easy control.

Repo-Level Prompt Generator (RLPG)

- Learns to generate example-specific prompts without requiring access to the model weights.
- We propose a set of repo-level rules. A rule consists of (i) rule context location, (ii) rule context type, (iii) rule context ratio. e.g. get method names and bodies from first import file and fill 50% of the prompt space with this context (see below).

*Corresponding author: dishu.905@gmail.com

Experiments and Results

- Dataset: Java repositories from Google Code archives[3]
- Preprocessing: Deduplication, Parsing the file level AST and collating repo-level meta-info
- Methods:

1.

- Codex: default Codex context.
- 2. Oracle: use the ground-truth vector that indicates success for each rule per example.
- Fixed Rule: using a fixed rule for all examples.
- Rule Classifier: Use a learned model to select the next rule conditioned on the example. Modelled as a multi-label binary classification task.
 - RLPG-H: use the hole context
 - RLPG-R: use the similarity of the hole context with the rule context.
- Prompt Generator: Concatenate the default Codex context with the selected rule's context in the rule context ratio.

Method	Success Rate(%) (hole-wise)	Rel. ↑(%) (hole-wise)	Success Rate(%) (repo-wise)	Rel. ↑(%) (repo-wise)
Codex (Chen et al., 2021)	58.73	-	60.64	140
Oracle	79.63	35.58	80.24	32.31
Fixed Rule $(k = 1)$	65.78	12.00	68.01	12.15
RLPG-H $(k = 1)$	68.51	16.65	69.26	14.21
RLPG-R $(k = 1)$	67.80	15.44	69.28	14.26

Data Split	SR Codex(%)	SR Oracle(%)	Rel. ↑ over Codex(%)
Train	59.78	80.29	34.31
Val	62.10	79.05	27.28
Test	58.73	79.63	35.58

Performance of the oracle

Performance of different methods averaged across all holes (hole-wise) and individual repositories (repo-wise).

Conclusions

- An oracle constructed from our proposed rules gives 36% relative improvement over Codex.
- When we use our rule-classifier to select the best rule, we get 17% relative improvement over Codex. RLPG also better than fixed rule.
- Future Work: Composition of rules and human-in-the-loop prompt generation.

References:

[1] Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards et al. "Evaluating large language models trained on code." arXiv preprint arXiv:2107.03374 (2021).

[2] https://github.com/features/copilot/ [3] https://code.google.com/archive/