
Methodology

Results

Conclusions

Repository-Level Prompt Generation for Large Language Models of Code
Disha Shrivastava*, Hugo Larochelle, Daniel Tarlow

*Corresponding author: dishu.905@gmail.com

Introduction

Methodology

Experiments and Results

Motivation
● Black-box access to LLMs. strongest models not publicly available, e.g. no access to model weights

for Codex [1] that is deployed in GitHub Copilot[2].
● Incorporating the repository info: structure and context from other files.

● Example-specific discrete prompts: easy to plug-in human domain-knowledge, easy control.

Repo-Level Prompt Generator (RLPG)
● Learns to generate example-specific prompts without requiring access to the model weights.
● We propose a set of repo-level rules. A rule consists of (i) rule context location, (ii) rule context type,

(iii) rule context ratio. e.g. get method names and bodies from first import file and fill 50% of the
prompt space with this context (see below).

● Dataset: Java repositories from Google Code archives[3]
● Preprocessing: Deduplication, Parsing the file level AST and collating repo-level meta-info
● Methods:

1. Codex: default Codex context.
2. Oracle: use the ground-truth vector that indicates success for each rule per example.
3. Fixed Rule: using a fixed rule for all examples.
4. Rule Classifier: Use a learned model to select the next rule conditioned on the

example. Modelled as a multi-label binary classification task.
■ RLPG-H: use the hole context
■ RLPG-R: use the similarity of the hole context with the rule context.

● Prompt Generator: Concatenate the default Codex context with the selected rule’s context in the
rule context ratio.

● An oracle constructed from our proposed rules gives 36% relative improvement over Codex.
● When we use our rule-classifier to select the best rule, we get 17% relative improvement over

Codex. RLPG also better than fixed rule.
● Future Work: Composition of rules and human-in-the-loop prompt generation.

References:
[1] Chen, Mark, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards et al. "Evaluating large language models
trained on code." arXiv preprint arXiv:2107.03374 (2021).
[2] https://github.com/features/copilot/
[3] https://code.google.com/archive/

Performance of the oracle

Performance of different methods averaged across all holes (hole-wise) and individual
repositories (repo-wise).

https://github.com/features/copilot/
https://code.google.com/archive/

